Search Results: “” — Page 1
John Phillips, Laila Burger
The majority of Australian tailings dams over the last 100 years have been successfully built using upstream construction. However, recent major tailings dam failures in some countries have led to a global industry wide review of the design and management of tailings storage facilities, with a focus on the upstream raise method as a common factor for some failures. As a reaction to the recent failures, there is the potential for regulations to become more restrictive and the potential for unjustified pressure on existing and new mines to rule out upstream raising due to possible safety and failure risks.
This paper looks at whether it is the upstream construction method or other more fundamental issues that have led to these failures and examines whether such issues are equally relevant in Australia. Does Australia have a specific advantage in being able to successfully use upstream tailings dam construction or are we fooling ourselves?
The topic of upstream tailings storage is a subject of broad and current interest and the lessons learned from historic failures are rightfully leading to improvements. Implementation of good practice starts with the overall management structure that guides how tailings dams are designed, constructed, operated and closed.
Critical design practice involves understanding the unique site conditions, properties of the tailings and management of tailings placement, as the tailings form part of the overall retaining structure. Good practice during operation of upstream tailings dams is key to reducing the risk of tailings dam failures and the success of safe and sustainable closure.
This paper presents key features of both good and bad practice for the upstream raising of tailings dams and discusses how the design and operation can be made more resilient to ensure the safety of the community and infrastructure. It concludes that upstream raising can be a safe and economical method of tailings disposal if designed, constructed and operated correctly.
Now showing all 2 search results
-
$15.00
2019 Papers
2019 – In Defence of Upstream Tailings Dam Construction
Learn more
Learn more
John Phillips, Laila Burger
The majority of Australian tailings dams over the last 100 years have been successfully built using upstream construction. However, recent major tailings dam failures in some countries have led to a global industry wide review of the design and management of tailings storage facilities, with a focus on the upstream raise method as a common factor for some failures. As a reaction to the recent failures, there is the potential for regulations to become more restrictive and the potential for unjustified pressure on existing and new mines to rule out upstream raising due to possible safety and failure risks.
This paper looks at whether it is the upstream construction method or other more fundamental issues that have led to these failures and examines whether such issues are equally relevant in Australia. Does Australia have a specific advantage in being able to successfully use upstream tailings dam construction or are we fooling ourselves?
The topic of upstream tailings storage is a subject of broad and current interest and the lessons learned from historic failures are rightfully leading to improvements. Implementation of good practice starts with the overall management structure that guides how tailings dams are designed, constructed, operated and closed.
Critical design practice involves understanding the unique site conditions, properties of the tailings and management of tailings placement, as the tailings form part of the overall retaining structure. Good practice during operation of upstream tailings dams is key to reducing the risk of tailings dam failures and the success of safe and sustainable closure.
This paper presents key features of both good and bad practice for the upstream raising of tailings dams and discusses how the design and operation can be made more resilient to ensure the safety of the community and infrastructure. It concludes that upstream raising can be a safe and economical method of tailings disposal if designed, constructed and operated correctly.
Learn more
-
$15.00
2020 Papers
2020 – Dynamic Analyses for Static Liquefaction Factor of Safety and Triggering Threshold Values in Tailings Storage Facilities Constructed by Upstream Method
Learn more
Learn more
Qian Gu, Joshua Chan
Tailings Storage Facilities (TSF) constructed using upstream methods may have static liquefaction risks due to the strain softening behaviour of contractive tailings. Conventional Limit Equilibrium Analyses (LEA) using either peak strength or residual strength fail to address the stress-strain compatibilities between materials at different stages of softening or hardening, resulting in over or underestimating embankment stabilities. Static numerical analyses (Finite Element or Difference) are unable to identify the threshold stability due to their inability to converge close to or beyond equilibrium conditions.
In this study the failure triggering process is modelled with dynamic Finite Element Analyses (FEA) with the stress-softening behaviour of contractive tailings simulated by Norsand Model. The embankment failures are identified by either non-zero residual velocities along downstream face, or a drop in average shear stress along potential failure surfaces under increasing disturbing surface pressure. Threshold disturbing surface pressure estimated using these two methods are in close agreements. Factor of Safety (FoS) values estimated from peak mobilised shear strength are found to be between those estimated using the peak and residual shear strength in LEA. q-p’ stress paths in tailings clearly show the stress ratio increasing towards and beyond instability ratio during undrained triggering process. The developments of zones of shear softening and p’ reduction with increasing undrained disturbances help visualise the failure triggering process.
Learn more