Search Results: “” — Page 1
Rob Ayre, Terry Malone
Abstract: Fairbairn Dam with a storage capacity of 1,301,100 ML is the second largest dam in Queensland in terms of water supply capacity. The dam forms the head works of the Nogoa – Mackenzie Water Supply Scheme operated by SunWater in Central Queensland. Completed in 1972, it consists of a zoned earth-fill embankment 49 m high and 823 m in length. The dam has an un-gated ogee spillway crest that is 4.2 m high and 165 m long, with an original design capacity of 15,600 m3/s.
In January 2008, Central Queensland experienced significant flood producing rains which were generated from low pressure systems associated with monsoonal activity across northern Australia. Rainfall totals over the 16,000 km2 catchment area of Fairbairn Dam varied in depth from around 200 mm to nearly 700 mm during a five day period to 20 January 2008. This resulted in the largest outflow from the dam since its construction and the first spill event from the dam since April 1990. While the dam had a significant mitigating impact, there was still major flooding of the township of Emerald, some 19 kilometres downstream.
This paper describes the performance of the dam during the event. Details of the data collected during and after the event, including assessments of spillway performance, dam safety surveillance and the implementation of the Emergency Action Plan will be presented. In particular, the paper focuses on the flood response concerning downstream communities and the resultant flood effects on Emerald and major infrastructure located in the downstream flood plain. It highlights the need for dam owners to have the capability of forecasting inflows and outflows to their structures and how this information contributes to the overall flood response system.
Keywords: dam safety, spillway, flooding, Fairbairn Dam, Emerald, SunWater, Queensland.
Now showing all 2 search results
-
$15.00
2008 Papers
2008 – Fairbairn Dam – performance during flood of record
Learn more
Learn more
Rob Ayre, Terry Malone
Abstract: Fairbairn Dam with a storage capacity of 1,301,100 ML is the second largest dam in Queensland in terms of water supply capacity. The dam forms the head works of the Nogoa – Mackenzie Water Supply Scheme operated by SunWater in Central Queensland. Completed in 1972, it consists of a zoned earth-fill embankment 49 m high and 823 m in length. The dam has an un-gated ogee spillway crest that is 4.2 m high and 165 m long, with an original design capacity of 15,600 m3/s.
In January 2008, Central Queensland experienced significant flood producing rains which were generated from low pressure systems associated with monsoonal activity across northern Australia. Rainfall totals over the 16,000 km2 catchment area of Fairbairn Dam varied in depth from around 200 mm to nearly 700 mm during a five day period to 20 January 2008. This resulted in the largest outflow from the dam since its construction and the first spill event from the dam since April 1990. While the dam had a significant mitigating impact, there was still major flooding of the township of Emerald, some 19 kilometres downstream.
This paper describes the performance of the dam during the event. Details of the data collected during and after the event, including assessments of spillway performance, dam safety surveillance and the implementation of the Emergency Action Plan will be presented. In particular, the paper focuses on the flood response concerning downstream communities and the resultant flood effects on Emerald and major infrastructure located in the downstream flood plain. It highlights the need for dam owners to have the capability of forecasting inflows and outflows to their structures and how this information contributes to the overall flood response system.
Keywords: dam safety, spillway, flooding, Fairbairn Dam, Emerald, SunWater, Queensland.
Learn more
-
$15.00
2008 Papers
2008 – Design Rainfall Issues in South East Queensland
Learn more
Learn more
Terry Malone
Abstract: Recent studies in SE Queensland for existing and proposed dams and other flood studies have highlighted a number of issues with respect to the design event approach in deriving and applying design rainfalls to calibrated runoff routing models.
The estimation of design rainfall depths for frequent to large events is usually done by the intensity-frequent-durations (IFD) methods outlined in Australian Rainfall and Runoff (AR&R) or CRC-Forge.
The design temporal patterns applied to these rainfall depths are critical in the estimation of design floods as are the adopted loss rates.
This paper describes the methods used to derive the design rainfall and some of the issues which arose in their application in the design event approach to assessing design floods. It uses examples at several locations in studies undertaken by SunWater and refers to similar issues encountered in other studies.
Implications for flood studies are outlined.
Keywords: design rainfall, design floods, CRC-FORGE, IFD, temporal patterns, SunWater, Queensland.
Learn more