Search Results: “” — Page 1
Richard Herweynen, Jamie Campbell, Mohsen Moeini
Hydropower storage plays an expanding role in integrated power systems internationally and can enable increased use of intermittent renewable energy sources such as wind and solar.With an increased amount of renewable energy within the Australian grid, pumped storage has gained increased focus in the past 2years. Entura have been working with Genex Power Ltd. to investigate, evaluate, optimise and design the Kidston Pumped Storage Project, located at the old Kidston gold mine in Northern Queensland. Through this design process, the final arrangement developed included an upper reservoir turkey’s nest dam to be built on the existing waste rock dump on the northern side of the Eldridge Pit, using the existing waste rock dump material and lining it with an HDPE liner. The original waste rock dump was formed during the mining operation by progressively dumping the waste rock predominantly from the Eldridge Pit excavation, with the haul truck traffic being the only compaction that occurred. Since the closure of the mine about 20 years ago, some consolidation of the waste rock dump has occurred.As a result, the key risks identified for the construction of the turkey’s nest dam on top of the waste rock dump were: (1) the stability of the slopes of the waste rock dump, which were generally at the angle of repose for the rockfill material; (2) the absolute settlement of the waste rock dump as the final dam crest level requires a settlement allowance in excess of the flood freeboard requirements; and (3) the differential settlement as excess differential settlement could cause fatigue stress cracking within the liner.This paper presents the investigation and modelling undertaken to confirm the feasibility of constructing this turkey’s nest dam on top of the existing rock waste dump, utilising the historical data on dumped rockfill dams. The paper also presents the feasibility design developed for the upper storage.
Now showing all 2 search results
-
$15.00
2017 Papers
2017 – A Turkey’s Nest Dam on Top of a Waste Rock Dump – An Innovative Solution for the Kidston Pumped Storage Project
Learn more
Learn more
Richard Herweynen, Jamie Campbell, Mohsen Moeini
Hydropower storage plays an expanding role in integrated power systems internationally and can enable increased use of intermittent renewable energy sources such as wind and solar.With an increased amount of renewable energy within the Australian grid, pumped storage has gained increased focus in the past 2years. Entura have been working with Genex Power Ltd. to investigate, evaluate, optimise and design the Kidston Pumped Storage Project, located at the old Kidston gold mine in Northern Queensland. Through this design process, the final arrangement developed included an upper reservoir turkey’s nest dam to be built on the existing waste rock dump on the northern side of the Eldridge Pit, using the existing waste rock dump material and lining it with an HDPE liner. The original waste rock dump was formed during the mining operation by progressively dumping the waste rock predominantly from the Eldridge Pit excavation, with the haul truck traffic being the only compaction that occurred. Since the closure of the mine about 20 years ago, some consolidation of the waste rock dump has occurred.As a result, the key risks identified for the construction of the turkey’s nest dam on top of the waste rock dump were: (1) the stability of the slopes of the waste rock dump, which were generally at the angle of repose for the rockfill material; (2) the absolute settlement of the waste rock dump as the final dam crest level requires a settlement allowance in excess of the flood freeboard requirements; and (3) the differential settlement as excess differential settlement could cause fatigue stress cracking within the liner.This paper presents the investigation and modelling undertaken to confirm the feasibility of constructing this turkey’s nest dam on top of the existing rock waste dump, utilising the historical data on dumped rockfill dams. The paper also presents the feasibility design developed for the upper storage.
Learn more
-
$15.00
2021 Papers
2021 – Maintaining and increasing efficiency in reservoirs – geomembranes and floating photovoltaic panels
Learn more
Learn more
Alberto Scuero, Gabriella Vaschetti, John Cowland
Efficiency in water supply reservoirs, even more so in pumped storage reservoirs, requires good water management and minimisation of water losses. With climate change affecting the quantity of water available for supply and power generation, minimising water losses is becoming more and more crucial, and the most efficient way to achieve this critical objective is to line the reservoir with a watertight geomembrane system. With more than 60 years of use, flexible geomembrane systems have proven to be a dependable technology for new construction as well as for rehabilitation. Efficiency can also be increased by covering the reservoir with a floating geomembrane cover to minimise evaporation losses, and by adding value to the reservoir with the installation of floating photovoltaic panel farms on the surface of the reservoir, to provide or increase electrical power generation. This paper addresses these two aspects of efficiency: water loss minimisation, by presenting concepts and advantages of geomembrane liners, and concepts and application
of floating photovoltaic farms with a case history in a water supply reservoir. The concept of a floating
photovoltaic farm on a pumped storage reservoir, and information on available guidelines for geomembrane systems and floating photovoltaic panels, are also presented.
Learn more