Search Results: “” — Page 1
Andrew Evans, Michael Cawood, Jonathon Reid
Eildon Dam, Goulburn Weir and Waranga Basin in Victoria are owned and managed by Goulburn-Murray Water (G-MW). Eildon Dam and Goulburn Weir are situated on the Goulburn River, while Waranga Basin is an offstream storage supplied from Goulburn Weir.
In November 2004 a dam safety emergency exercise involving the establishment of a central Emergency Coordination Centre at Tatura as well as Emergency Operations Centres at each of these three dam sites was conducted. The exercise presented a variety of emergency situations in stepped time increments, including earthquake, mechanical failure, a hazardous material spill and a terrorism related incident. External agencies were not involved.
The exercise was part of an ongoing G-MW program designed to test and improve dam safety emergency planning and response systems for all of G-MW’s dams and highlighted areas where procedures, situational management and communications can be enhanced.
Outcomes aimed for in G-MW’s program are improvement in Dam Safety Emergency Plans and internal communications, together with clarification of roles, responsibilities and capabilities.
The valuable experiences learned from this dam safety emergency exercise and plans for a larger scale exercise involving other emergency management agencies will be shared with others through this paper.
Now showing all 3 search results
-
$15.00
2005 Papers
2005 – Dam Safety Emergency Exercise for Eildon Dam, Goulburn Weir and Waranga Basin
Learn more
Learn more
Andrew Evans, Michael Cawood, Jonathon Reid
Eildon Dam, Goulburn Weir and Waranga Basin in Victoria are owned and managed by Goulburn-Murray Water (G-MW). Eildon Dam and Goulburn Weir are situated on the Goulburn River, while Waranga Basin is an offstream storage supplied from Goulburn Weir.
In November 2004 a dam safety emergency exercise involving the establishment of a central Emergency Coordination Centre at Tatura as well as Emergency Operations Centres at each of these three dam sites was conducted. The exercise presented a variety of emergency situations in stepped time increments, including earthquake, mechanical failure, a hazardous material spill and a terrorism related incident. External agencies were not involved.
The exercise was part of an ongoing G-MW program designed to test and improve dam safety emergency planning and response systems for all of G-MW’s dams and highlighted areas where procedures, situational management and communications can be enhanced.
Outcomes aimed for in G-MW’s program are improvement in Dam Safety Emergency Plans and internal communications, together with clarification of roles, responsibilities and capabilities.
The valuable experiences learned from this dam safety emergency exercise and plans for a larger scale exercise involving other emergency management agencies will be shared with others through this paper.
Learn more
-
$15.00
2019 Papers
2019 – Nonlinear FE Analysis and Remedial Design of Cracked Dam Monoliths Subject to Large Post-tensioning, Flood and Earthquake Forces
Learn more
Learn more
Francisco Lopez , Michael McKay , Jonathon Reid , Nathaniel Selladurai
The Keepit Dam Safety Upgrade Project is being implemented to bring the 54m high concrete gravity dam in line with current guidelines for flood and earthquake loading. Stage 2A of the project involves the installation of two vertical 91 strand post-tensioned anchors on each monolith of the spillway section.
During coring of the anchor head blocks for the vertical anchors, deep cracks were observed across some monoliths, dipping diagonally in an upstream direction. In two of the monoliths the cracks were found to be continuous enough to possibly daylight at the upstream face and form freestanding blocks. If the freestanding blocks postulate is correct, the block stability could be currently relying on the friction of the cracked surface and on the engagement with shear keys of adjacent monoliths, which are provided in the vertical contraction joints.
This paper will explain the complex 3-D nonlinear Finite Element Analysis (FEA) conducted to replicate the conditions of the cracked spillway monoliths during the post-tensioned anchor installation. The nonlinearity captured the expected opening, closing and sliding of the crack, as well as its potential pressurisation, and the residual shear strength retention due to asperities of the crack surface. For the shear keys of the vertical contraction joints, the nonlinearity captured the force-deformation relationship of the plain concrete, up to a brittle failure condition if the shear strength threshold was reached.
The 3-D nonlinear FEA was also used to design the optimum number of Macalloy post-tensioned bars required to stitch the freestanding block to the monolith, so that the vertical anchors can be safely installed. In addition, the remedial design accounted for future extreme design flood and extreme earthquake loading conditions, the latter modelled with a time-history analysis.
Learn more
-
$15.00
2009 Papers
2009 – Lessons learnt on design, manufacture and placement of filter materials
Learn more
Learn more
Jonathon Reid, Chris Kelly, Bob Wark
One of the most important aspects in the construction of an embankment dam is to be confident that the filter materials placed meet the design intent. The design methodology for filters is now well documented.
However, all too often during construction the filter material, as placed, does not comply with the specified requirements and all parties are faced with costly decisions and delays to the works to determine correction measures and whether the work completed meets the design intent. This paper shares the knowledge gained over a number of projects the authors’ have been involved in and the methods used to improve the properties of the placed filters taking into account some of the practicalities of having these materials produced and placed in a commercial environment
Keywords: filters, specifications, manufacturing, construction, quality assurance.
Learn more