Search Results: “” — Page 1
N. Vitharana, G. McNally, C. Johnson, A. Thomas, K. Dart and P. Russell
Millbrook Reservoir is an offline storage with an earthen embankment dam containing a puddle clay core and a moderately sized upstream catchment. The dam is 31m high and has a capacity of 16.5 GL when the storage water level is at the Full SupplyLevel (FSL). The reservoir is 25km NE of Adelaide on Chain of Ponds Creek, a tributary of the River Torrens. The dam was constructed during the years 1914-1918. Earthworks were carried out only during summer as the five winters during the construction period were very wet.
Dam safety reviews and geotechnical investigations, undertaken between 2001 and 2004 by SKM, showed that these winter recesses would have created weak layers, increasing the potential for piping due to the lack of a filter. This was highlighted by the large deformations which occurred at the end of construction in 1918. The spillway was assessed as able to pass a flood event with AEP of 1:1,300,000. Given the location of the dam, ANCOLD(2000b) Guidelines suggest the dam should be able to safely pass the PMF flood event. Accordingly, the dam required upgrading to modern guidelines.
The 2005 detailed design of the upgrade included the construction of a 70m wide unlined spillway, construction of filters on the downstream face of the dam with a stabilisation (weighting) fill, installation of instrumentation and seismic protection of the outlet tower. The construction of these works is currently underway.
Now showing all 11 search results
-
$15.00
2006 Papers
2006 – Investigations and Design of Remedial Works at Millbrook Dam in South Australia
Learn more
Learn more
N. Vitharana, G. McNally, C. Johnson, A. Thomas, K. Dart and P. Russell
Millbrook Reservoir is an offline storage with an earthen embankment dam containing a puddle clay core and a moderately sized upstream catchment. The dam is 31m high and has a capacity of 16.5 GL when the storage water level is at the Full SupplyLevel (FSL). The reservoir is 25km NE of Adelaide on Chain of Ponds Creek, a tributary of the River Torrens. The dam was constructed during the years 1914-1918. Earthworks were carried out only during summer as the five winters during the construction period were very wet.
Dam safety reviews and geotechnical investigations, undertaken between 2001 and 2004 by SKM, showed that these winter recesses would have created weak layers, increasing the potential for piping due to the lack of a filter. This was highlighted by the large deformations which occurred at the end of construction in 1918. The spillway was assessed as able to pass a flood event with AEP of 1:1,300,000. Given the location of the dam, ANCOLD(2000b) Guidelines suggest the dam should be able to safely pass the PMF flood event. Accordingly, the dam required upgrading to modern guidelines.
The 2005 detailed design of the upgrade included the construction of a 70m wide unlined spillway, construction of filters on the downstream face of the dam with a stabilisation (weighting) fill, installation of instrumentation and seismic protection of the outlet tower. The construction of these works is currently underway.
Learn more
-
$15.00
2006 Papers
2006 – Specialist Dam Safety Instrumentation for Identifying and Monitoring Earthquake Damage at Aviemore Dam, New Zealand
Learn more
Learn more
P Amos, N Logan, and J Walker
There are a number of geological faults in close proximity to Aviemore Power Station in the South Island of New Zealand, including a fault in the foundation of the 48m high earth dam component of the power station. Possible movement of the Waitangi Fault in the earth dam foundation is of particular concern for dam safety, and the effects on the dam of a fault rupture has been the subject of detailed investigation by the dam’s owner Meridian Energy Ltd. These investigations have concluded that the dam will withstand the anticipated fault displacement related to the Safety Evaluation Earthquake without catastrophic release of the reservoir.
The identification of damage to the dam following an earthquake and monitoring of the dam to identify the development of potential failure mechanisms are important for determining the post-earthquake safety of the power station. The first stage of the post-earthquake response plan is the quick identification of any foundation fault rupture and damage to the dam to enable immediate post-earthquake mitigation measures to be initiated, such as reservoir drawdown. Following initial response, the next stage of the post-earthquake monitoring programme for the embankment dam is longer term monitoring to identify a changing seepage condition due to damage to the dam that might lead to a piping incident. Such an incident may not occur immediately after an earthquake, and it can be some time before the piping process becomes evident.
This paper presents some key instrumentation installed at Aviemore Dam and included in the emergency response plan for the post-earthquake monitoring of the embankment dam.
Learn more
-
$15.00
2015 Papers
2015 – Towards Risk-Based Surveillance Programmes – Maximising the Value of Your Monitoring Spend
Learn more
Learn more
Mark Arnold, Chris Topham, Phil Cummins
A central tenet of the ANCOLD Guidelines on Dam Safety Management (2003) is that the higher the consequence of failure of a dam, the more stringent the surveillance scope, frequency, and safety criteria that should be applied to that dam. This concept has generally served the industry well to date in assisting regulators and dam owners to focus on the dams that could have the highest impacts if they failed. ANCOLD 2003 does also suggest that risk may be taken into consideration, however it is the experience of the authors that for dam surveillance and monitoring programmes, the majority of owners and consultants are reluctant to stray too far from the tables provided in the Guideline. However, two owners have recently embarked on a formal process to apply a risk based approach to the specification of surveillance and monitoring for their dams. This paper outlines how sub-optimal outcomes that can arise when the guideline tables are applied exclusively, presents the process undertaken by two owners of large portfolios of high consequence dams, and demonstrates the benefits achieved when a risk based approach is used. The paper concludes that any update or rewrite of the 2003 Dam Safety Management Guidelines should promote a risk based, rather than a consequence based approach to surveillance and monitoring.
Keywords: Risk, risk-based surveillance programme, instrumentation, monitoring.
Learn more
-
$15.00
2017 Papers
2017 – Operation and Implementation of a Web-based Dam Monitoring Platform
Learn more
Learn more
Stefan Hoppe, Vicent J. Espert-Canet
Monitoring data has to be transformed into useful knowledge to provide owners and operators with valuable information about the safety status of their dams. This information should be up-to-date and easily accessible for all technicians and engineers involved inthe safety program,and directly linked to operation and emergency preparedness procedures.This article describes the main functions of a web-based software for the acquisition, processing,and evaluation of monitoring data. It runs on conventional internet browsers,and does not require the installation of any additional software. It provides appropriate tools for monitoring the safety status of dams and analysing dam behaviour.This article uses a case study to outline the experience gained from implementing and operating the software for 8 years to control more than 50 Spanish public dams owned by a river basin authority. The implementation involved completely revisingthe installed monitoring systems and recompiling all available information. This was used as a basis for an updated,goal-oriented definition of necessary variables, configuration of charts, SCADA views and threshold values. A key aspect of the software ́s successful implementation was the theoretical and practical training of all stakeholders.As a result of the software ́s implementation, the dam owner was able to use the data from their monitoring system more efficiently. The development of safety reviews and dam safety status evaluations were also considerably improved.
Learn more
-
$15.00
2018 Papers
2018 – Exploring the Potential of Advanced Instrumentation in Physical Hydraulic Modelling for Spillway Design
Learn more
Learn more
Ben Modra, Stefan Felder, Laura Montano, Mathieu Deiber, Chad Martin, Craig Wiltshire, Michel Raymond, Barton Maher
Physical modelling of dam structures remains a preferred method for validating and improving dam designs. Flow behaviour in the approach and over the crest of a dam can be accurately studied with traditional methods such as pressure transducers, piezometers and current meters due to the relatively smooth and steady flow conditions. However, characterising flows within a stilling basin is far more difficult due to the complex, aerated and highly turbulent flow conditions. Recent work on detailed measurement of hydraulic jumps using a line-scanning Lidar was adapted for measurement of stilling basin surface profiles in a 1:50 scale model of Somerset Dam, QLD. Lidar was shown to be an effective and efficient tool for providing assessment of the toe jump, boil and flow into the downstream channel.
Learn more
-
$15.00
2021 Papers
2021 – Improving Survey Monitoring Techniques – Real-Time Monitoring Systems
Learn more
Learn more
Thomas Ridgway, Nic Polmear, Hugh Tassell
All industries, inclusive of the dams and tailings industry use some form of monitoring and reporting to confirm items or services are functioning properly or correct. In engineering, we seek to use both manual and automated systems to both qualifiably and quantifiably define the suitability of a process or structure/item. As the dams industry continues to evolve with technology and with ongoing developments in stewardship expectations for both water dams and tailings dams the industry is beginning to move into automation of their instrumentation systems. This process has recently been undertaken at a mine in NSW with the development of both a near real-time survey monitoring and visualisation system as well as a monthly photographic assessment system. This paper will set out the process undertaken to assess the surveillance monitoring requirements for the mine, details of the design, implementation of a near real-time monitoring system and the difficulties associated with the work.
Learn more
-
$15.00
2014 Papers
2014 – Clyde Dam and Lake Dunstan; The First 21 Years
Learn more
Learn more
Peter F Foster and Peter K Silvester
Clyde Dam, the largest concrete gravity dam in New Zealand, was constructed in the 1980’s on the Clutha River in New Zealand. Lake Dunstan, which is the reservoir formed by the dam, reached its full operating level in 1993, some 21 years ago.
This paper summarises the performance of the dam over this period, the changes in operations that have been undertaken and looks to future challenges. The performance and management of the landslides around Lake Dunstan that were remediated prior to lake filling is outlined. The large floods experienced in the Clutha River in the 1990’s highlighted aspects of the flood management procedures that needed amending to capture lessons learned and some modifications to appurtenant structures have been completed. Changes to the environmental management in moving from water rights to consent conditions under the Resource Management Act are addressed.
Over the last 21 years a sediment delta has progressed down Lake Dunstan, as expected, and a long term sediment management plan has been developed for both Lake Dunstan and Lake Roxburgh which is downstream of Clyde Dam. A summary of the plan is discussed. The seismic hazard at the dam site is currently under study to update the seismic assessment parameters for the dam.
Learn more
-
$15.00
2006 Papers
2006 – Specialist Dam Safety Instrumentation for Identifying and Monitoring Earthquake Damage at Aviemore Dam, New Zealand
Learn more
Learn more
P Amos, N Logan and J Walker
There are a number of geological faults in close proximity to Aviemore Power Station in the South Island of New Zealand, including a fault in the foundation of the 48m high earth dam component of the power station. Possible movement of the Waitangi Fault in the earth dam foundation is of particular concern for dam safety, and the effects on the dam of a fault rupture has been the subject of detailed investigation by the dam’s owner Meridian Energy Ltd. These investigations have concluded that the dam will withstand the anticipated fault displacement related to the Safety Evaluation Earthquake without catastrophic release of the reservoir.
The identification of damage to the dam following an earthquake and monitoring of the dam to identify the development of potential failure mechanisms are important for determining the post-earthquake safety of the power station. The first stage of the post-earthquake response plan is the quick identification of any foundation fault rupture and damage to the dam to enable immediate post-earthquake mitigation measures
to be initiated, such as reservoir drawdown. Following initial response, the next stage of the postearthquake monitoring programme for the embankment dam is longer term monitoring to identify a changing seepage condition due to damage to the dam that might lead to a piping incident. Such an incident may not occur immediately after an earthquake, and it can be some time before the piping process becomes evident.
This paper presents some key instrumentation installed at Aviemore Dam and included in the emergency response plan for the post-earthquake monitoring of the embankment dam.
Learn more
-
$15.00
2008 Papers
2008 – Risk assessment in spillway remedial works design and construction and monitoring at Googong Dam
Learn more
Learn more
James Willey, Malcolm Barker, Javad Tabatabaei
Abstract: During successive flood events from the end of construction of Googong Dam in 1978 through to the late 1980s, erosion of in excess of 5,000 m³ of rock occurred in the partially unlined section at the downstream end of the spillway channel. Remedial works were undertaken in stages during the 1980s to stabilise the eroded chute and limit further erosion. A project is currently underway as part of the Bulk Water Alliance to construct remedial works in the spillway to repair erosion damage and increase the spillway capacity to safely pass the current estimate of the Probable Maximum Flood. The design was undertaken by GHD Pty Ltd as part of a separate engagement prior to the formation of the Alliance.
The recent work involved a review of the historical performance and prediction of future performance of the structure. A process involving the development and comparison of options and ultimately the detailed design of the preferred arrangement followed, including refinement and validation using a physical hydraulic model study.
This paper presents risk assessment techniques used throughout the project on a range of tasks including prediction of future spillway erosion damage and comparison of spillway remedial works options, assessment of construction flood risk and definition of instrumentation requirements for the dam and associated structures.
Keywords: risk assessment, remedial works, spillway erosion, rock erosion, construction risk, instrumentation.
Learn more
-
$15.00
2010 Papers
2010 – Performance of Taum Sauk Upper Reservoir Dam During Reservoir Refill
Learn more
Learn more
Jared Deible, John Osterle, Charles Weatherford, Tom Hollenkamp, Matt Frerking
The original rockfill dike, constructed in 1963 to form the Upper Reservoir at the Taum Sauk Pump Storage Project near Lesterville, MO failed on December 14, 2005. The Upper Reservoir has been completely rebuilt as a 2.83 million cubic yard (2.16 million cubic meters) Roller Compacted Concrete (RCC) Dam in compliance with FERC Regulations. The project is the largest RCC project constructed in the USA and is the first pumped storage project to utilize an RCC water retaining structure. The project is owned and operated by AmerenUE and consists of an Upper Reservoir and a Lower Reservoir connected by a vertical shaft, rock tunnel, and penstock. The Powerhouse has two pump-turbines with a total generation capacity of 450MW.
A refill plan was developed to monitor the performance of the dam during the first refill. Because it is a pumped storage project with no natural inflow, the reservoir level can be raised and lowered with reversible pump turbines. The refill plan includes hold points when the dam s performance will be assessed at eight reservoir levels. Monitoring of the performance of the dam is done through instrumentation readings and visual inspections. Inspections check for alignment changes, leakage, seepage, cracking, or any other unusual or changed conditions. Instrumentation monitored during the refill program includes piezometers, seepage weirs, survey monuments, and joint meters. The level control system for the project was also evaluated during the refill program. This paper summarizes the monitoring and inspections conducted during the refill and the performance of the dam during this period, and the performance of the dam during the initial period after the refill program.
Learn more
-
$15.00
2011 Papers
2011 – The Quality Chain of Dam Surveillance
Learn more
Learn more
Dan Forster, Murray Gillon
A robust and defensible dam surveillance process is considered to be the ‘front-line of defence’ in ensuring dams do not present an unacceptable risk to people, property and the environment. The concept of a ‘Quality Chain of Dam Surveillance’ describes the surveillance process as a multi-linked chain where each step in the process forms a critical link. Without rigorous attention given to quality assurance links in the chain can become tenuous or broken and thus compromise the integrity of the whole chain. Hydro Tasmania is currently re-engineering its existing surveillance process using the Quality Chain of Dam Surveillance as a basis.
This paper presents the concept of the quality chain and uses the Hydro Tasmania improvement initiative as an example application of the concept. The paper is intended to provide a fresh perspective on what is sometimes considered a stale topic and reinforces the need for a considered approach to dam surveillance.
2011 – The Quality Chain of Dam Surveillance
Learn more