Search Results: “” — Page 1
Peyman Andaroodi, Barton Maher
Seqwater is a statutory authority of the Government of Queensland that provides bulk water storage, transport and treatment, water grid management and planning, catchment management and flood mitigation services to the South East Queensland region of Australia. Seqwater also provides irrigation services to about 1,200 rural customers in the region that are not connected to the grid and provides recreation facilities. Seqwater owns and operates 26 referable dams regulated under Queensland dam safety legislation.
Leslie Harrison Dam is an Extreme Hazard category dam located in the Redland Bay area of Brisbane.A significant portion of Population at Risk is located within a short distance downstream of the dam, reducing the available warning time in the event of a dam safety issue and impacting on the estimated loss of life used to assess risk. Following the Portfolio Risk Assessment undertaken by Seqwater in 2013, a series of detailed investigations were undertaken to confirm the assessed risk and the scope and urgency of the upgrade works.
Before a final decision on the scope and timing of the dam upgrade is made, Seqwater has completed a detailed review of the downstream consequences. This review was intended to update the Population at Risk(PAR) and Potential Loss of Life(PLL) estimates using the latest estimation methods for a range of scenarios. Three life loss estimation methods were used including empirical and dynamic simulation models and the results were compared.
This paper discusses the updated consequences assessment and the impact on the assessed risks, for Leslie Harrison Dam for both the current dam and the proposed upgrade scenarios using the revised Potential Loss of Life estimates.
Now showing all 7 search results
-
$15.00
2017 Papers
2017 – Impact of Detailed Consequence Assessment on Leslie Harrison Dam Upgrade Works
Learn more
Learn more
Peyman Andaroodi, Barton Maher
Seqwater is a statutory authority of the Government of Queensland that provides bulk water storage, transport and treatment, water grid management and planning, catchment management and flood mitigation services to the South East Queensland region of Australia. Seqwater also provides irrigation services to about 1,200 rural customers in the region that are not connected to the grid and provides recreation facilities. Seqwater owns and operates 26 referable dams regulated under Queensland dam safety legislation.
Leslie Harrison Dam is an Extreme Hazard category dam located in the Redland Bay area of Brisbane.A significant portion of Population at Risk is located within a short distance downstream of the dam, reducing the available warning time in the event of a dam safety issue and impacting on the estimated loss of life used to assess risk. Following the Portfolio Risk Assessment undertaken by Seqwater in 2013, a series of detailed investigations were undertaken to confirm the assessed risk and the scope and urgency of the upgrade works.
Before a final decision on the scope and timing of the dam upgrade is made, Seqwater has completed a detailed review of the downstream consequences. This review was intended to update the Population at Risk(PAR) and Potential Loss of Life(PLL) estimates using the latest estimation methods for a range of scenarios. Three life loss estimation methods were used including empirical and dynamic simulation models and the results were compared.
This paper discusses the updated consequences assessment and the impact on the assessed risks, for Leslie Harrison Dam for both the current dam and the proposed upgrade scenarios using the revised Potential Loss of Life estimates.
Learn more
-
$15.00
2018 Papers
2018 – Demonstration of HEC-LifeSim Analysis of Dam Failure
Learn more
Learn more
Tyson Leong-Cuzack, Rhys James, Robert Fowden, Chris Nielsen
An assessment of dam failure consequence for Jandowae Water Supply Dam in South-West Queensland was performed using HEC-LifeSim. The purpose of the assessment was to investigate the applicability of the software to inform decisions on an appropriate regulatory pathway for the dam that reflects the consequences of failure. This paper details the development of the hydrologic and hydraulic models behind the HEC-LifeSim simulations, the assignment of key parameters and their sensitivities, and a comparison of predictions to existing procedures for assessing potential loss of life and populations at risk. The paper reflects upon the level of effort required to develop HEC-LifeSim assessments and the relative benefits gained using this information in the regulatory space.
Learn more
-
$15.00
2018 Papers
2018 – Using HEC-LifeSim to Better Understand and Reduce Dam Failure Consequences for Three Case Studies Around Australia
Learn more
Learn more
Hench Wang, Andrew Northfield, Peter Hill
HEC-LifeSim modelling has been emerging in the industry over the last few years and is increasingly becoming the preferred method for detailed consequence and failure impact assessments. The increased adoption rate of HEC-LifeSim modelling is a result of advancements to computation power and hydraulic modelling techniques and allows dam owners to obtain more robust and consistent estimates of the potential loss of life (PLL) compared to the traditional Graham (1999) and RCEM (USBR, 2014) approaches.
This paper will demonstrate, through the use of three examples, how the inputs and outputs from HEC- LifeSim have been used to identify potential ways to better understand the consequences as a result of dambreak.
Learn more
-
$15.00
2019 Papers
2019 – Lessons Learnt From Evacuation Modelling for Dam Failure Consequence Assessments
Learn more
Learn more
Hench Wang
The use of simulation models to assess dam failure consequences has progressively advanced in Australia over the past few years. For example, it is now common for HEC-LifeSim to be used to estimate potential loss of life from the failure of large dams with large populations at risk downstream. Since its introduction to Australia, numerous presentations and papers have been provided by USACE and industry professionals that highlight the benefits of using HEC-LifeSim for a range of different case studies.
Whilst the majority of the literature published to date have focused on the benefits of simulation modelling, this paper identifies some of the technical challenges that can arise, particularly in the evacuation modelling component of HEC-LifeSim. The techniques that have been used to overcome these challenges are also discussed using three case studies.
The first case study demonstrates the sensitivity of the life loss to changes in cell size and the output interval of the gridded hydraulic data. This is done by comparing the differences in life loss between high-resolution and low-resolution models for three dambreak models. The second case study illustrates the importance of the road network representation in HEC-LifeSim because the resolution of the road network is important to achieve plausible estimates of the fatalities along roads, and logical animations of the mobilisation. The final case study demonstrates the implications of coincident flow modelling on the life loss, and therefore the importance of understanding the hydrology of the target and neighbouring catchments.
This paper provides a checklist that prompts practitioners to consider some of the lessons learnt over the last few years and is envisaged to be a working document that improves the defensibility and robustness of HEC-LifeSim estimates throughout the industry.
Learn more
-
$15.00
2020 Papers
2020 – Demonstrating risk benefits of improved monitoring and surveillance
Learn more
Learn more
Hench Wang, Peter Hill, Sam Banzi, Muhammad Hameed
Dam owners can often struggle to demonstrate the dam safety risk benefits that can be achieved through non-structural risk reduction measures, such as adoption of smart technological solutions that improve the timeliness and quality of decision making. WaterNSW collaborated with HARC to develop a novel way of demonstrating benefits from improved data management. This paper discusses the use of HEC-LifeSim to demonstrate the reduction in life safety risk from improved monitoring through DamGuard for a case study dam in Sydney. DamGuard is a real-time dam safety monitoring system implemented by WaterNSW. This case study was the first time in Australia where a simulation model such as HEC-LifeSim was applied to quantify the life safety risk benefits pre and post the implementation of DamGuard. The implementation of DamGuard to the sample dam was estimated to reduce the life safety risk by 15%.
Learn more
-
$15.00
2020 Papers
2020 – Estimation of consequences for WaterNSW’s diverse portfolio of Greater Sydney dams
Learn more
Learn more
Andrew Northfield, Peter Hill, Muhammad Hameed, Hench Wang, Sam Banzi
In 2018 WaterNSW undertook a Portfolio Risk Assessment (PRA) for 20 dams across the greater Sydney area.
This paper describes the estimation of consequences for this large and diverse portfolio of dams. For some dams the population at risk were greater than 100,000 people whereas for others there were no permanent PAR which required the careful consideration of itinerants. This diversity of the dams required that the approach for estimating the consequences be tailored to the specific characteristics. For example, the approaches for estimating the potential loss of life (PLL) varied from a detailed simulation model (HECLifeSim) to a simpler empirical approach (Reclamation Consequence Estimation Methodology (USBR, 2014) to bespoke consideration of itinerant campers and users of walking tracks. For some dams the economic costs were driven by direct infrastructure costs whereas for other the indirect costs dominated the total economic cost for failure.
Learn more
-
$15.00
2021 Papers
2021 – Lessons learnt from the application of HEC-LifeSim 2.0 to multiple dams across Australia
Learn more
Learn more
Hench Wang, Edward Funnell, Albert Shen, Matt Scorah, Peter Hill
The use of simulation models to assess dam failure consequences has progressively advanced in Australia over the past few years. For example, it is now common for HEC-LifeSim to be used to estimate potential loss of life from the failure of large dams with large populations at risk downstream. Since its introduction to Australia, numerous presentations and papers have been provided by USACE and industry professionals that highlight the benefits of using HEC-LifeSim Version 1.0.1 for a range of different case studies.
This paper identifies some of the new features in the latest version of HEC-LifeSim that can improve the robustness and defensibility of the potential loss of life estimates for dambreak consequence assessments. The techniques that have been used to overcome these challenges are also discussed using some case studies.
The first case study demonstrates the sensitivity of the model performance and potential loss of life to changes in version and number of iterations used to simulate the life loss. This is done by comparing the differences in simulation run time and life loss between the previous and new versions of HEC-LifeSim for an example model. The second case study presents an example application of both versions of HEC-LifeSim to compare the results between one version and the other for a different dam and the final case study illustrates an improved method for interrogating the available outputs from HEC-LifeSim to provide the user with more information that otherwise could not be obtained from the default outputs.
Learn more