Search Results: “” — Page 1

Hong Kie Thio, Paul Somerville, Don Macfarlane

Fault displacement can occur due to primary faulting on a main fault intersecting a dam foundation or rim, as well as by secondary faulting. This secondary faulting may be triggered locally by the occurrence of primary faulting on a main fault; its occurrence is conditional on the occurrence of an earthquake on the main fault. A probabilistic approach is most viable for fault displacement hazard analysis. Unlike the case of probabilistic ground motion hazard, which is nonzero even for short return periods due to the occurrence of a broad range of earthquake magnitudes in a wide region around the site, probabilistic fault displacement hazard is zero for return periods less than the recurrence interval of surface faulting earthquakes on the fault. In Australia, these recurrence intervals typically lie in the range of 10,000 to 100,000 years.

Consequently, the fault displacement hazard due to primary faulting may be zero or negligible for return periods shorter than 10,000 or 100,000 years. For longer return periods, the hazard is best evaluated using a risk-based approach, as recommended by ANCOLD (2018); the alternative of using a deterministic approach, which disregards return period, could potentially yield a large fault displacement. The probability of triggered secondary faulting, conditional on the occurrence of a large earthquake on the main fault, is typically one or two orders of magnitude lower than that on the main fault, and so is even more likely to be zero or negligible for return periods shorter than 10,000 to 100,000 years

Showing the single result

  • $15.00
    2019  Papers

    2019 – Probabilistic Fault Displacement Hazard Analysis for Dams in Australia

    Learn more
    Learn more