Search Results: “” — Page 1
P L Campbell, J W Walker and J T Mills
The results of a questionnaire on deformation surveys sent to dam owners around the world are presented. An analysis of the large variation in current international practice is made. The link between geodetic surveys and displacement instrumentation is established. The comparison with practice within a recent major New Zealand dam owner is drawn and a deformation survey policy is developed. Recourse is made to dam safety guidelines. Application of the policy is then described for a selection of differing types of hydraulic structures. It is shown that with the application of the policy a more rational approach resulted, surveys better reflected actual performance and there was better integration with the overall dam safety monitoring programme.
Now showing 1–12 of 36 search results:
-
$15.00
2001 Papers
2001 – Benchmarking Deformation Surveys of Hydraulic Structures Against International Practice
Learn moreP L Campbell, J W Walker and J T Mills
The results of a questionnaire on deformation surveys sent to dam owners around the world are presented. An analysis of the large variation in current international practice is made. The link between geodetic surveys and displacement instrumentation is established. The comparison with practice within a recent major New Zealand dam owner is drawn and a deformation survey policy is developed. Recourse is made to dam safety guidelines. Application of the policy is then described for a selection of differing types of hydraulic structures. It is shown that with the application of the policy a more rational approach resulted, surveys better reflected actual performance and there was better integration with the overall dam safety monitoring programme.
Learn more -
$15.00
2001 Papers
2001 – Greenhouse Gas Emissions from Reservoirs — Is Australian Hydropower Environmentally Friendly?
Learn moreDr Bradford Sherman, Dr Phillip Ford, Allison Mitchell, Gary Hancock
Recent reports from the World Commission on Dams have highlighted the relative lack of knowledge regarding the release of greenhouse gases (GHGs) from reservoirs. In order to be considered eligible to receive carbon credits in the future, hydropower facilities probably will be assessed using some sort of life cycle analysis of net GHG emissions.
Unfortunately, empirical data regarding GHG emissions is available only for a few reservoirs none of which are located in temperate or semi-arid climates.
We report preliminary observations on the vertical distributions of methane and carbon dioxide in Chaffey Reservoir (Tamworth, NSW) and Dartmouth Reservoir, two temperate zone reservoirs located in southeastern Australia. In Chaffey, the diffusive methane flux from the hypolimnion to the epilimnion (where it is oxidised by bacteria) was estimated to be 220-1760 mg-CH, m’ d’. Operation of a destratification system released 43 t of CH, to the atmosphere in 3 days. The carbon dioxide flux to the atmosphere via the surface of Dartmouth was 21-168 mg-CO, m’ d’, and 530 mg-CO, m° d’ through the turbine. The impact on GHG emissions of common reservoir management techniques such as destratification and hypolimnetic oxygenation is discussed.
Learn more -
$15.00
2002 Papers
2002 – Restoration of Storage Capacity at Lyell Dam Using Hydroplus Fusegates and Construction Stages
Learn moreBill Hakin, Phillip Solomon, Peter Siers Bruce Goddard
Lyell Dam is located on the Coxs River near Lithgow NSW Australia. It was constructed in 1982 to supply cooling water to Delta Electricity’s Mt. Piper and Wallerawang power stations.
In 1994 the storage capacity of the dam was increased by 7,500 Ml by raising the embankment height and installing two 3.5m high inflatable rubber dams on an enlarged and slightly raised spillway sill. Two significant failures of the rubber dams in 1997 and 1999, led the dam owner to seek an alternative method of maintaining the increased Full Supply Level (FSL) whilst still providing spillway capacity for the design flood. Although the lost storage has a certain strategic value to Delta Electricity, the main reason for restoring the capacity to its former level was to preserve the environmental and recreational use of the reservoir for the local community.
Following a detailed review of options, Delta Electricity chose to regain the former FSL with the Hydroplus Fusegate System. Because of the freeboard available at Lyell dam it was possible to design the Fusegates such that none tip before the 20 000 AEP flood.
In order to derive accurate as-built levels and dimensions of the existing spillway, new laser scanning methods were utilised to create a digital 3-D model of its complex shape.
The water retaining concrete Fusegates were poured in-situ and designed without anti-crack reinforcement. This innovation was only possible by use of a special design mix and careful temperature control/monitoring during concrete placing.This is the first installation of the Hydroplus Fusegate System in Australia. The paper examines the philosophy of approach and various unique methods used in the application of the System during the design and construction stages.
Learn more -
$15.00
2003 Papers
2003 – INVESTIGATIONS AND DESIGN OF UPGRADE WORKS AT TANK HILL RESERVOIR IN VICTORIA
Learn moreTank Hill Reservoir is located approximately 25km north-east of Warrnambool and forms part of the fresh water supply for the town. It was built in the 1930’s by the construction of an earthfill dam across the natural breach of the crater of an extinct volcano. The reservoir is an offline storage with a small natural catchment and has a nominal capacity of 770ML at Full Supply Level (FSL). The reservoir is operated by South West Water Authority (SWWA).
Previous investigations had identified instability issues associated with the dam embankment and the necessity for remedial work to increase the stability of the dam embankment. SKM undertook detailed survey and investigations and the proposed upgrade works include the construction of a downstream stabilising berm incorporating graded filters and a drainage system. The condition of the outlet works was investigated as part of the project, with some of these works found to be in poor condition with a risk to the security of supply, necessitating the design of refurbishment of the outlet works. The degree of siltation of the reservoir was also assessed, and some loss of capacity due to siltation was noted.
Detailed investigations were performed to determine the optimum configuration of the stabilising berm and to locate and test suitable construction materials. The embankment interface filters were designed to satisfy modern filter design criteria and were incorporated in the embankment drainage system. The condition of the outlet works, including the intake standpipe, three offtake valves and the outlet conduit beneath the embankment, were assessed via manual and CCTV inspections. An operation review, incorporating the proposed upgrade works within the framework of ongoing operation of the reservoir for supply to downstream customers was also prepared, as was a construction risk assessment.
This paper will present “extremely useful practical information” for dam design engineers, owners and operators where the whole spectrum of dam safety issues is required for the successful completion of remedial works design and construction.
Learn more -
$15.00
2004 Papers
2004 – DAM SAFETY LEGISLATION CHANGES IN NEW ZEALAND
Learn moreLegislation specifically addressing dam safety was passed into law by the New Zealand Government on 12 August 2004 as part of the Building Act 2004.
Learn more
Government, local authorities, and the dam industry have debated the need for specific dam safety legislation in New Zealand since the late 1980’s. The previous legislative framework addressing dam safety in New Zealand included civil law, the Resource Management Act 1991 and the Building Act 1991. The provisions regarding dam safety within this legislation were implied rather than specific.
In 2001, as part of the Building Act Review, various government departments reviewed current dam safety regimes in New Zealand. One of the objectives was to address issues related to lack of clarity with regard to regulatory responsibility and inconsistency in the application of the current law. The New Zealand Society on Large Dams (NZSOLD) along with owners and Local Government representatives has participated in this process. The following paper is an update on the progress of dam safety legislation, outlining the evolution and structure of the dam safety provisions within the new Act. Some brief comparisons are also made to current Australian legislation. -
$15.00
2004 Papers
2004 – Dam Safety Legislation Changes in New Zealand
Learn morePeter Mulvihill
Legislation specifically addressing dam safety was passed into law by the New Zealand Government on 12 August 2004 as part of the Building Act 2004.
Government, local authorities, and the dam industry have debated the need for specific dam safety legislation in New Zealand since the late 1980’s. The previous legislative framework addressing dam safety in New Zealand included civil law, the Resource Management Act 1991 and the Building Act 1991. The provisions regarding dam safety within this legislation were implied rather than specific.
In 2001, as part of the Building Act Review, various government departments reviewed current dam safety regimes in New Zealand. One of the objectives was to address issues related to lack of clarity with regard to regulatory responsibility and inconsistency in the application of the current law. The New Zealand Society on Large Dams (NZSOLD) along with owners and Local Government representatives has participated in this process. The following paper is an update on the progress of dam safety legislation, outlining the evolution and structure of the dam safety provisions within the new Act. Some brief comparisons are also made to current Australian legislation.
Learn more -
$15.00
2015 Papers
2015 – A Methodology for Shortlisting Numerous Flood Mitigation Storage Options in Catchments
Learn moreRussell Cuerel, Richard Priman, Michel Raymond, Ian Hanks
Following significant flood events across Queensland over the last five years causing significant damage in South East Queensland, Bundaberg Burnett region, St. George in the south west and more recently in Central Queensland in the Callide Valley, there has been renewed interest in finding solutions to flooding issues.
Learn more
Increasing the available flood storage within a catchment is a well-known method of improving flood mitigation outcomes for developed areas. In many basins/catchments, potential flood storage development options (new storages or augmentations to existing storages) can be identified by reviewing previous water supply investigations and flood studies and by scanning topographic mapping. From such site identification there will often be numerous combinations of possible flood storage development options to consider because of the number of tributaries which may contribute to major flood events.
This paper outlines a methodology to screen, within a relatively short timeframe and at relatively low cost, a large number of identified flood storage development options and combination development scenarios and shortlist for more detailed analysis. The screening process is heavily reliant on hydrologic assessments to rapidly short-list scenarios for assessment and then relies on traditional engineering and economic assessments to do the fine tuning of the analysis.
Keywords: flooding, damages, impacts, flood storage, flood mitigation, dams, benefit-cost ratio. -
$15.00
2015 Papers
2015 – A regional study of water storage options in the Wairarapa
Learn moreMichael Bassett-Foss , David Bouma , Dewi Knappstein
The Wairarapa Water Use Project (WWUP) in the southern North Island, New Zealand, is investigating new water storage schemes involving large dams that will allow the community to make use of the water resources that are currently available, but not necessarily available at the time they are needed. It is estimated that the 12,000 hectares currently irrigated in the Wairarapa could be increased to about 42,000 hectares depending on actual demand. The WWUP provides for a range of possible needs, such as supply of new areas of irrigation, increased reliability for existing irrigation and frost fighting, environmental augmentation of low summer river flows, environmental flushing flows, stock drinking water, power generation, municipal water supply, and recreational use.
Learn more
WWUP objectives include early engagement of stakeholders, early integration of financial, social, cultural and environmental factors in decision-making, management of uncertainty associated with the preliminary level of investigation and evolving regulatory framework, development of an equitable framework for efficiently comparing options, and balancing long and short-term considerations.
A large number of dam options were identified, storing 3 to 80 million m3 of water, and progressively narrowed to a shortlist of 2 sites through a complex process of concept development, desktop studies, site visits, hydrological analyses, cost estimates and multi-criteria analyses.
The WWUP demonstrates how sustainable new major water storage schemes can be promoted in a highly regulated environment of a developed nation.
Keywords: Dams, water storage, stakeholder engagement, environment, water allocation, multi-criteria analysis -
$15.00
2015 Papers
2015 – Anomalies in design for mining dams
Learn moreJiri Herza and John Phillips
The design of dams for mining projects requires processes and technology that are unfamiliar to many mine owners and managers. Dam designers rely on ANCOLD assessments of Consequence Category, commonly leading to a High rating for mining dams due to a combination of potential loss of life, impact on environment and damage to assets such as mine voids, process plants, workshops, offices, roads, railways etc.
Learn more
From this High Consequence Category the relevant annual exceedance probabilities for design parameters and loading conditions such as earthquakes and floods are selected.
Mining companies have sophisticated methods available for assessing risk, yet for their assets they often adopt an order of magnitude lower security for earthquake and floods even though the consequences in terms of lives at risk and impact on project are similar.
The discrepancies in the design standards lead to situations where extreme dam loads are adopted to prevent damage and loss of life in assets that theoretically would have already collapsed under much lower loads.
One difference may be that some mining dams exist in an environment which is controlled by a single entity. Unlike other dams, failure of these mining dams would therefore impact only individuals and assets which fall under the responsibility of the same entity.
This paper discusses the discrepancies between the design of mining dams and the design of other mine infrastructure. The paper considers the impact of discrepancies on the overall risk to the mine and compares the degree of protection offered by a factor of safety and the influence of reliability of design input parameters, alternate load paths and design redundancy.
Keywords: Dams, tailings dams, mining, acceptable risk, factors of safety -
$15.00
2015 Papers
2015 – Estimation of Seismic Hazard for Dams with a Consistent Risk Approach
Learn moreMaz Mahzari and Chi-Fai Wan
Upgrading of an existing dam often faces challenges in both static and seismic safety assessment. The use of new hydrological and seismological data and improved design methods often mean more severe loading which outdates the original design and demands expensive upgrade works. Establishing the design criteria for checking the structural adequacy of an existing dam for multiple unusual load events occurring within a relatively short time frame presents another challenge.
Learn more
A probabilistic approach is presented to rigorously address the effects of multiple load events while maintaining a consistent risk of failure for the structure. This is based on a probabilistic conditional combination where probability of each event is defined and used to develop a joint probability distribution. For instance if an earthquake occurs following a severe flood, the seismic hazard curve of the site can be used to adjust the seismic loading with shorter average recurrence interval to be used in conjunction with the pre-earthquake flood when assessing the structural adequacy of the dam. With this method of adjustment, the design can benefit from the choice of a reduced seismic design loading and hence a more cost effective design solution.
The proposed method is straightforward and can be effectively used in most engineering practices, including the design of hydraulic structures such as dams.
Keywords: Dams, Seismic Hazard, Post-earthquake, Risk analysis -
$15.00
2015 Papers
2015 – The hydropower dam lenders’ technical advisor – roles, responsibilities and lessons learned
Learn moreAndrew Noble
This paper explores the role of the Lenders’ Technical Advisor (LTA) in identifying and mitigating risks in hydropower dam projects on behalf of the project lenders. It describes the LTA services that are required to manage the pre-financial close, construction and financing periods.
Learn more
There are differing types of risk in both large and small hydropower projects (contractual, commercial, participant, completion, country, technology, reputational, environmental and social, etc.) and these are discussed with regard to how the lenders may be exposed if the risk eventuates either during dam construction or in operation.
Whereas a large dam for water supply would in its own right be a major project, the dam(s) associated with large hydropower will likely represent less than 25% of the total project cost and with this imbalance comes competing drivers for the other components (tunnels, waterways, powerhouse, M&E equipment, transmission lines, substations, etc).
The paper discusses the typical process whereby a hydropower developer has procured a feasibility study and is working towards financial close — covering both large and small types, i.e. storage dams and run-of-river diversion weir types, and the noticeable trend for fast-tracked developments to make a single large step from feasibility study through to engineer-procure-construct (EPC) contracting. This scenario presents some challenges for the initial due diligence when assessing in the pre-financial close stage.
The paper draws on case studies from the Asia Pacific region to illustrate the key elements in hydropower project financing from the LTA’s perspective, together with the author’s recent and current experience on multiple hydropower projects across Asia and Africa in the run-of-river, storage reservoir and pumped storage type of plants. It also brings together findings from the author’s own recent papers on the subjects of hydropower feasibility studies, the roles of lenders, owners and advisors, and tailored for an ANCOLD audience where the focus is on the dams component of hydropower.
Keywords: Lenders’ Technical Advisor, Dams, Hydropower. -
$15.00
2016 Papers
2016 – Lies, Dam Lies, and Statistics: The Compilation and Analysis of a New Zealand Inventory of Dams
Learn moreK.A. Crawford-Flett, J.J.M. Haskell
Dam inventories can provide a comprehensive understanding of a region’s dam population; from dam quantity, type, age, height, and purpose; to ownership profiling and broad-based regional risk assessment using GIS applications. Historically, New Zealand has lacked a comprehensive inventory of dam assets, instead relying on local and industry knowledge to characterise the dam infrastructure and its key properties, issues, and risks.
This paper presents a cross-sectional characterisation of dams in New Zealand, based on the recent compilation and analysis of a New Zealand Inventory of Dams (NZID). The NZID is the first inventory of its kind for NZ dams, comprising almost 1200 unique structures over 3 m in height. Inventory data was sourced from existing publications, NZSOLD, and regional authorities. The analysis of anonymised inventory data provides an understanding of the number and distribution of assets, along with characteristic physical properties (construction material, height, age, purpose).
Statistical comparisons are drawn in relation to published international dam inventories. Similarities and differences in the international dam populations are noted, particularly with regard to construction era and type. The NZ portfolio is unique in that dams are typically shorter in height, and a significant proportion of structures serve the hydroelectric and energy sectors.
Analysis of the new NZID confirms the need for research that is focused on the long-term performance of aging earth dams, particularly those exceeding 40 years of age. In addition to informing research needs and foci, the new NZID provides statistics on the dam population with far-reaching industry and management applications
Learn more -
$15.00
2016 Papers
2016 – Maintenance and Testing of Post-Tensioned Anchors for Dams and Appurtenant Structures
Learn moreSean Ladiges, Robert Wark, Richard Rodd
The use of permanent, load-monitorable post-tensioned, anchors for dam projects has been in place for approximately 35 years in Australia. Since then, over 30 large Australian dams have been strengthened using this technology, including the world record for anchor length (142 m – Canning Dam, WA) and size (91×15.7 mm strands – Wellington Dam, WA and Catugunya Dam, TAS).
In order to achieve the design life of 100 years expected of these anchors, an ongoing program of monitoring, testing and maintenance is required, to identify and rectify the initiation of corrosion or loss of pre-stress. Guidance for maintenance and testing regime for post-tensioned anchors in dams is provided in the ANCOLD Guidelines on Dam Safety Management (2003). The various conditions which may affect the performance of the anchor with time, such as anchor type, ground condition and loading fluctuations are not covered in the Guideline.
This paper reviews the implementation and results of anchor monitoring programs by Australian dam owners. The first part of this paper provides a summary of the testing and monitoring programs currently being implemented. The second part of the paper reviews the aggregated anchor load test results from a number of Australian dam owners, and identifies trends in anchor response over time following installation.
The paper aims to assess whether the recommended anchor testing regime proposed in ANCOLD (2003) is appropriate and cost effective, using evidence from recent load test data which has become available following the writing of the guideline. The lessons learnt from anchor maintenance programs will also be discussed.
Learn more -
$15.00
2016 Papers
2016 – Probabilistic Slope Failure Risk Estimation of a Dam with Zones of Weak Foundation Material
Learn moreRyan Singh, Bob Wark
For existing dams built before modern theories and understanding of soil mechanics were fully developed, it was often the case that comprehensive investigations into the properties of the embankment and foundation material were not carried out. With more stringent dam safety requirements and engineering criteria, and a better understanding of soil mechanics, it is necessary to undertake embankment and foundation investigations on such dams, with the view to gain a better understanding of the embankment and foundation conditions.
This paper details the method used for a risk-based assessment of a dam’s stability against slope failure for steady-state seepage conditions, based on a probabilistic assessment of differing interpretations of the material properties for the foundation. To achieve this, several separate interpretations of material strength models were developed for a foundation, using various subsets of available tri-axial data. The mean strengths of these models were used to assess the stability, and to account for the variation in strength properties of each model, the sampling distribution of the mean was used to assess the likelihood of failure.
Finally, an event-tree type risk analysis was used to calculate a value for the probability of slope failure.
A case study has been presented using this method.
Learn more -
$15.00
2017 Papers
2017 – Construction Flood Risk Strategies for Dam Upgrades
Learn moreColleen Baker, Sean Ladiges, Peter Buchanan, James Willey, Malcolm Barker
Dam Owners and Designers are often posed with the question “what is an acceptable flood risk to adopt during the construction of dam upgrade works?” Both the current ANCOLD Guidelines on Acceptable Flood Capacity (2000) and the draft Guidelines on Acceptable Flood Capacity (2016) provide guidance on the acceptability of flood risk during the construction phase. The overarching principle in both the current and draft documents is that the dam safety risk should be no greater than prior to the works, unless it can be shown that this cannot reasonably be achieved.Typically with dam upgrade projects it is not feasible to take reservoirs off-line during upgrade works, with commercial and societal considerations taking precedent. It is therefore often necessary to operate the reservoir at normal levels or with only limited drawdown. The implementation of measures to maintain the risk at or below that of the pre-upgraded dam can have significant financial and program impacts on projects, such as through the construction of elaborate cofferdam arrangements and/or staging of works. This is particularly the case where upgrade works involve modifications to the dam’s spillway.The use of risk assessment has provided a reasonable basis for evaluating the existing and incremental risks associated with the works, such as the requirement for implementation of critical construction works during periods where floods are less likely, in order to justify the As Low As Reasonably Practicable (ALARP) position. This paper explores the ANCOLD guidelines addressing flood risk, and compares against international practice. The paper also presents a number of case studies of construction flood risk mitigation adopted for dam upgrades on some of Australia’s High and Extreme consequence dams, as well as international examples. The case studies demonstrate a range of construction approaches which enable compliance with the ANCOLD Acceptable Flood Capacity guidelines
Learn more -
$15.00
2017 Papers
2017 – Lessons Learned and the impacts of Cyclones Debbie and Marcia on Queensland’s Emergency Planning and Guidelines
Learn morePeter Allen and Mark Rhimes
Recent tropical cyclones have had significant impacts on coastal Queensland and produced significant inflows into a large number of major dams with the triggering of a number of Emergency Action Plans for downstream release hazards. While there were several floods of record, there were no significant dam safety incidents. The dams seemed to have been blamed for a lot of this flooding even though they provided significant flood mitigation. This paper will cover the emergency responses to these events, the public perceptions and the associated third party reviews of these events. Community expectations and the ability to undertake post flood event assessments of dam operations is also driving such investigations.This paper will also discuss the consequential updates being made to Queensland Emergency Action Planning Guidelines to encourage effective engagement with local emergency planners and other stakeholders in the development of these guidelines.
Learn more