Search Results: “” — Page 1
Peter Buchanan, Malcolm Barker, Paul Maisano, Marius Jonker
Kangaroo Creek Dam located on the Torrens River, approximately 22 km north east of Adelaide, is currently undergoing a major upgrade to address a number of deficiencies, including increasing flood capacity and reducing its vulnerability to major seismic loading.
Originally constructed in the 1960s and raised in 1983, recent reviews have indicated that the dam does not meet modern standards for an extreme consequence category dam.
The original dam was generally constructed from the rock won from the spillway excavation. This rock was quite variable in quality and strength and contained significant portions of low strength schist, which broke down when compacted by the rollers. The nature of this material in places is very fine with characteristics more akin to soil than rock. Review of this material suggests that large seepage flows (say following a major seismic event and rupture of the upstream face slab) could lead to extensive migration of the finer material and possible failure of the embankment. However, it is also envisaged that the zones of coarser material could behave as a rockfill and therefore transmit large seepage flows, which may result in unravelling of the downstream face leading to instability.
This paper addresses the design of the embankment raising and stabilising providing suitable protection against both these possible failure scenarios, which tend to lead to competing solutions. The final solution required the embankment to be considered both as a CFRD and a zoned earth and rockfill embankment.
Now showing all 2 search results
-
$15.00
2016 Papers
2016 – Kangaroo Creek Dam Embankment Raising and Stabilisation – Balancing Competing Objectives
Learn more
Learn more
Peter Buchanan, Malcolm Barker, Paul Maisano, Marius Jonker
Kangaroo Creek Dam located on the Torrens River, approximately 22 km north east of Adelaide, is currently undergoing a major upgrade to address a number of deficiencies, including increasing flood capacity and reducing its vulnerability to major seismic loading.
Originally constructed in the 1960s and raised in 1983, recent reviews have indicated that the dam does not meet modern standards for an extreme consequence category dam.
The original dam was generally constructed from the rock won from the spillway excavation. This rock was quite variable in quality and strength and contained significant portions of low strength schist, which broke down when compacted by the rollers. The nature of this material in places is very fine with characteristics more akin to soil than rock. Review of this material suggests that large seepage flows (say following a major seismic event and rupture of the upstream face slab) could lead to extensive migration of the finer material and possible failure of the embankment. However, it is also envisaged that the zones of coarser material could behave as a rockfill and therefore transmit large seepage flows, which may result in unravelling of the downstream face leading to instability.
This paper addresses the design of the embankment raising and stabilising providing suitable protection against both these possible failure scenarios, which tend to lead to competing solutions. The final solution required the embankment to be considered both as a CFRD and a zoned earth and rockfill embankment.
Learn more
-
$15.00
2018 Papers
2018 – Omega-type External Waterstops on a CFRD – An Australian First
Learn more
Learn more
Paul Maisano, Peter Buchanan, Thomas Schmidt
Kangaroo Creek Dam is a concrete face rockfill dam (CFRD) located on the Torrens River, approximately 22 km north east of Adelaide. The dam is currently undergoing a major upgrade to align it with updated safety guidelines set by the Australian National Committee on Large Dams (ANCOLD) to better withstand major flood events or earthquakes. As part of this upgrade, external omega-type waterstops have been installed on the vertical and perimetric joints to mitigate the impact of expected joint deformations due to seismic loading. Two profiles were selected for the external waterstops; one capable of extending 200 mm for the perimetric joint and the outer two vertical joints on each side, and one capable of extending 100 mm for the remaining vertical joints and the horizontal joint between the new face slab and the original face slab. Using the external omega-type waterstops as the second waterstop for the extended perimetric joint simplified construction, particularly with respect to reinforcement details adjacent to joints. It is understood that this is the first time in Australia that an omega-type waterstop is being fitted to a CFRD slab. This paper demonstrates the benefits of retrofitting waterstops to existing dam joints when required, provides general installation details, details for providing a continuous barrier with the existing waterstops by overlapping internal and external waterstops, and lessons learnt from the waterstop installation.
Learn more