2017 – The Hamata Tailings Dam Design and Construction at the Hidden Valley Mine in Papua New Guinea
Mark Stephen Rynhoud, David Johns and Len Murray
The Hamata tailings storage facility at the Hidden Valley mine is being constructed in a remote, high rainfall, tropical environment in a mountainous region of Papua New Guinea. Implementation of the design hasrequired adapting the design in response to various challenges encountered on the site during the ongoing construction period, based on observations by the designers and site monitoring data which is continuously collected and compared against design assumptions. This paper describes some of the design and construction modifications which have been implemented since construction of the tailings facility started and provides a case history of some of the challenges facing designers and construction crews when mining in remote, tropical conditions.
$15.00
Now showing 1-12 of 47 2981:
Related products
-
$15.00
2017 Papers
2017 – Understanding Victorian Local Government Authority Dams and Retarding Basins
Learn moreMonique Eggenhuizen, Peter Buchanan, Reena Ram, Tusitha Karunaratne
The Department of Environment, Land, Water and Planning (DELWP) has a regulatory role for the safety of dams under the Water Act 1989 (Act) and is the control agency for dam related emergencies. Local Government in Victoria is divided up between 79 LocalGovernment Authorities (LGAs), each responsible for administering local infrastructure and community services such as roads, drainage, parks etc. Current records indicate that 42 of the 79 LGAs own or manage up to 435 dams and retarding basins.Many of these assets, which include a mix of old water supply dams, ornamental lakes and retarding basins, have been accumulated by LGAs over many years as a result of asset transfers and conversions, land development projects, flood mitigation programs and opportunistic acquisitions by the transfer of land. DELWP engaged GHD to assist and provide advice to the LGAs to significantly improve and update knowledge on LGA dams and retarding basins. The objective of this project is to ascertain where the State’s LGA dams and retarding basins are located, what risks they might pose to communities and infrastructure, what to consider during emergency management planning and response, and to provide owners with the essential management tools and procedures to effectively manage these assets, if these are not in place already.The outcome of this project was to support LGAs to improve management of their dams and retarding basins. It aimed to do this by assisting LGAs with the development of basic dam safety programs that will enable LGAs to more effectively manage their portfolios of dams and retarding basins in terms of ongoing maintenance, dam surveillance and emergency planning and response, and demonstrate due care.This project had a number of key challenges. These included the requirement to process and assess a large number of sites within a small timeframe whilst achieving good value for money,without compromising DELWP’s objectives. A number of efficient methods were adopted during this project particularly during the initial data gathering process, identifying those dams which needed to be inspected based on embankment heights, reservoir capacity and consequences, rapid preliminary assessment of consequences, the development of effective templates for the site inspections, and a method of applying qualitative risk assessments, applicable to the majority of the dams, allowing a consistent assessment of the status of each dam and damsafety documentation.The methods discussed(although developed specifically for the Victorian LGA dams portfolio)provide a sound basis for a screening tool to assess a large number of smaller dams in an efficient manner and quickly identify higher consequence category dams requiring attention. This method could easily be modified and adapted to be applied to similar portfolios of dams.
Learn more -
$15.00
2017 Papers
2017 – Nagmati Dam – A Project of Environmental and Cultural Significance
Learn moreRichard Herweynen, Suraj Neupane, Paul Southcott and Ashish B. Khanal
Kathmandu, the capital city of Nepal, is home to more than five million people. Three major rivers including the Bagmati run through the city of Kathmandu, providing the environmental and cultural lifelines for the civilisation and local people. High population growth in Kathmandu over the past 30years has put a serious environmental strain on the Bagmati River. Water is drawn from the Bagmati River for drinking, farming, industries and construction. Due to the lack of capacity in the current sewerage systems, untreated sewage is entering the river system, along with high quantities of rubbish. Although a holy river, the Bagmati River is highly degraded, with reduced flows, high pollution, and a fresh water ecosystem that is now destroyed.To revive the Bagmati River, the Government of Nepal with funding from the Asian Development Bank (ADB), is undertaking the Bagmati River Basin Improvement Project (BRBIP). One of the sub-projects is the construction of a dam on the Nagmati River to store water during the monsoon period for environmental release during dry season.Since November 2015, Entura have been involved in the investigation and detailed design of the Nagmati Dam. Through a simple storage model, it was determined that 8.2Mm 3 of live storage was required to meet the environmental flow objectives. To achieve this storage a 95m high dam was required at the Nagmati site, with a concrete faced rockfill dam (CFRD) determined to be the best option.This paper will present the development of this unique project, highlighting how a number of the challenges were addressed, leading to a sustainable project.
Learn more -
$15.00
2017 Papers
2017 – Seqwater Dam Improvement Program – Assessment, Prioritisation, Justification and Implementation of Dam Upgrades
Learn moreBarton Maher and Michael Peel
The Queensland Bulk Water Supply Authority (Seqwater) manages up to $12 billion of bulk water supply infrastructure and the natural catchments of the region’s water supply sources to ensure a reliable, quality water supply for more than 3million consumers across the region. Seqwater was formed on 1 January 2013 through a merger of three State-owned water businesses, the SEQ Water Grid Manager, LinkWater and the former Seqwater. Seqwater delivers a safe, secure and reliable water supply to South East Queensland, as well as providing essential flood mitigation services and managing catchment health. Seqwater also provides water for irrigation to about 1,200 farmers and offers community recreation facilities enjoyed by more than 2.5 million people each year.Seqwater owns and operates 26 referable dams which fall under the dam safety regulation in Queensland, 51 weirs, and two bore fields across the region. Twelve key dams across the region supply as much as 90% of South East Queensland’s drinking water.In 2011, Seqwater engaged a consultant team of URS (now AECOM) and SKM (now Jacobs) to undertake a portfolio risk assessment of the 26 referable dams and Mount Crosby Weir. At the completion of the project in December 2013 there were 12 dams with life safety risks assessed as being above the ANCOLD and DEWS Limit of Tolerability. A $6.2 million investigation was approved in 2014 to commence planning for the recommended dam safety upgrades and reduce uncertainties in the risk assessment.This program of work was completed in late 2016. The estimated costs of the identified dam safety upgrades exceed $900 million.Confronted with such a large capital program, Seqwater has instigated a number of key actions including:-benchmarking capital investment and rates of risk reduction achieved by other dam owners through a dam owners group-developing a dam safety investment policy to provide a clear guidance on the framework for prioritising and scheduling upgrades-undertaking targeted investigations to reduce uncertainty in the risk assessments including the use of detailed consequence assessment-preparing a prioritised schedule of planned upgrades to gain endorsement from Government and the Dam Safety Regulator. This paper presents the outcomes of the Portfolio Risk Assessment and key changes to the initial risk assessment following further studies. The basis for the dam safety investment policy is presented and the proposed prioritisation tools.The impacts of the risk assessment provisions in the most recent revision of Queensland Acceptable Flood Capacity Guidelines for Water Dams are also discussed. In particular,the application of the economic criteria for determining the minimum upgrade required by the Queensland Dam Safety Regulator and its relevance to other dam owners.
Learn more -
$15.00
2017 Papers
2017 – Tropical Cyclone Debbie – A SunWater Experience
Learn moreMichael Hughes, James Stuart
Tropical Cyclone Debbie (TC Debbie) formed in the Coral Sea on Saturday 25th March, 2017 and developed into a category 4 system that crossed the coast near Proserpine, Queensland with the eye passing very close to Peter Faust Dam. TC Debbie, later becoming Ex-TC Debbie embarked on a tour of SunWater infrastructure (See Figure 1). Of 23 referable dams managed or owned by SunWater in Queensland, only 3 had no inflows with spills resulting at twelve locations. The paper describes the varied experiences of SunWater with relation to preparation for, and operations during TC Debbie. Some key areas of interest to other dam owners include;
- Uncertainty around forecasts;
- Flash flood destruction of key hydrographic equipment;
- A review into dam operation;
- Returning a spillway construction site touse;
- A ‘direct hit’ by the eye of TC Debbie over Peter Faust Dam catchment;
- Successful prediction of Cyclone rainfall temporal patterns; and
- A record flood influenced by land use with learnings for flood risk assessments.
-
$15.00
2017 Papers
2017 – Tullaroop Dam: Ongoing Cracking and Unusual Pore Water Pressure Response in a 60 Year Old Earth Embankment
Learn moreGavan Hunter, David Jeffery and Stephen Chia
The Main Embankment at Tullaroop Dam in central Victoria is a 43 m high earthfill embankment with a very broad earthfill zone and rockfill zones at the outer toe regions. There has been an extensive history of cracking within the Main Embankment since formalisation of visual inspections in 1987.Widespread cracking has been observed on the crest and downstream shoulder. Cracking on the crest has mainly been longitudinal, but transverse cracks have also been observed. Cracking on the downstream shoulder has comprised longitudinal, diagonal and transverse cracking. In April 2004, a 60 mm wide diagonal crack opened on the downstream shoulder of the left abutment (from crest to toe) and Goulburn-Murray Water constructed a local filter buttress in 2005/06 on the left abutment. In 2011/12 a longitudinal crack opened up on the upper downstream berm toward the right abutment. The crack was initially 15m long and 10 to 215 mm wide, then propagated several months later to 70 m in length, 40 to 50 mm width and greater than 3 m in depth.In May 2011 three piezometers within the earth fill core recorded a very rapid rise in pore water pressure equivalent to 12 to 13 m pressure head above their previous readings. The piezometers were located on the same alignment (upstream to downstream) and were located below the crest and downstream shoulder, and the rise was to levels close to and above the embankment surface. The piezometers then showed a steady fall with time returning to the pre rise levels after 4 to 6 weeks.In 2015/16 Goulburn-Murray Water undertook dam safety upgrade works to reduce the risk of piping through the Main Embankment by extension of the filter buttress across the full width of the embankment. During these upgrade works, very deep (greater than 5 m) and extensive transverse cracks were observed in the embankment over relatively subtle slope changes on the right abutment.Thecracking and pore water pressure behaviour in the Main Embankment at Tullaroop Reservoir present an important case study. The paper provides details on the cracking and postulated crack mechanisms, and the rapid pore water pressure rise and postulated mechanisms. A summary of the upgrade works is also provided.
Learn more