2011 – Tailings Storage, Current and Future Trends
Bruce Brown, Mark Coghill
Tailings management practices have evolved significantly over the last 30 to 40 years with emphasis on long term geotechnical and geochemical stability to meet community expectations and company liabilities. The main drivers have been environmental protection both during operations and post closure, public safety and water conservation. Mining companies have become aware of the significant risks resulting from the operation of tailings facilities with a number of high profile failures occurring in recent times. The common practice of building a containment structure and depositing tailings as unthickened slurry is being challenged and tested against alternative tailings treatment technologies. These include high rate thickening, paste thickening and filtration. The potential benefits of these technologies include significant reduction in process water losses, reduced design duties for the confinement structures and improved conditions for closure. Notwithstanding these potential benefits, very few facilities have implemented the new technologies due to economic constraints imposed by the evaluation methods used by the mining industry. This paper summarises the available tailings treatment technologies and the resulting implications for tailings facility design. It reviews the benefits and critiques the economic evaluation method currently in use and recommends that the industry changes its evaluation methodology to drive future trends.
Tailings Storage, Current and Future Trends
$15.00
Related products
-
$15.00
Papers 2011
2011 – Refurbishing Outlet Valves utilising Shutdown Periods
Learn moreFrank Nitzsche
Awoonga Dam is the sole source of water for the City of Gladstone and the heavy industries in the region. The area’s distribution reservoirs hold little more than a day’s supply. Extended water supply disruption could have severe economic impacts.
The nine large valves in the inlet tower and river outlet of the dam cannot be inspected or maintained without shutting down the entire water abstraction system. Consequentially limited maintenance has been carried out in the 25 years since the valves were installed.
Recent Dam Safety inspections carried out for the dam owner, the Gladstone Area Water Board (GAWB,) noted some deterioration of the valves and recommended that the valves should be removed, inspected and refurbished as necessary
GAWB was thus presented with a daunting challenge to refurbish valves at Awoonga Dam, as it was generally believed that their removal for refurbishment would not be possible within the time limitations imposed by the system and customer requirements.
In 2008 GAWB commissioned GHD to develop a strategy to refurbish the valves within a 12 hour shutdown period. The strategy proposed and adopted required a rigorous risk management approach and close collaboration between GAWB’s operational staff, two contractors and the consulting engineers. The work was successfully completed during 2011.
This paper discussed the strategies and processes developed and how the project planning, supervision and execution was driven by the risk management based approach. It also highlights some of the experiences and lessons learnt during the project.
2011 – Refurbishing Outlet Valves utilising Shutdown Periods
-
$15.00
Papers 2011
2011 – Refurbishment of Ambuklao and Binga Hydro Power Dams and Appurtenant Works
Learn moreJohn Grimston, Robin Dawson
The Ambuklao and Binga Hydro-Electric Power Projects are located in Luzon, Philippines and were privatised in early 2008 after public bidding. Ambuklao dam forms an impoundment on the Agno River. The nearest city, Baguio, is approximately 45km or 1.5hrs drive away. The key headworks feature is an embankment central core rockfill dam and reaches a maximum height of some 129 m above the bed of the Agno River. A gated spillway is located at the left abutment, with a steep chute and flip bucket. Binga dam forms an impoundment approximately 20 km downstream of the Ambuklao dam. The rockfill embankment with an inclined clay core reaches a height of about 107 m above the bed of the Agno River. The spillway is located at the left abutment.
Heavy tropical rains and typhoons can cause very high flows in the rivers leading into the Ambuklao and Binga reservoirs. PMF peak flow is 11,600 cumecs. Due to the steep slopes surrounding the reservoir and along the access roads to the Binga Dam, landslides can create a hazard in the reservoir or for emergency access to the dam. There are numerous active faults in the area, including the Abra, Digdig and Philippines Faults (the latter being one of the most active faults around the Philippines). The region around the dams is capable of and has experienced earthquakes with a magnitude of 7.8 on the Richter Scale. This was demonstrated by the 1990 earthquake (7.8 magnitude) and caused minor damage to the dam structures.
The Project owner commenced rehabilitation implementation planning immediately after purchasing the facilities aimed at reactivating the Ambuklao plant’s 75MW capacity (inoperable since 1999 due to reservoir siltation issues triggered by the 1990 earthquake) and increasing it to 105MW. Rehabilitation at the Binga plant will increase capacity from it’s current 100MW to 120MW. The overall rehabilitation works include plant, intakes, associated tunnels, etc. This paper will focus primarily on the dam and spillway related rehabilitation, studies and design including review of the PMF and spillway capacity for both dams, Ambuklao innovative upstream face rehabilitation, Ambuklao spillway studies and rehabilitation and Binga spillway works and reservoir sedimentation studies.
2011 – Refurbishment of Ambuklao and Binga Hydro Power Dams and Appurtenant Works
-
$15.00
Papers 2011
2011 – How do you solve a problem like retarding basins? An asset owner’s perspective
Learn moreKirsty Carroll, Kelly Maslin, Richard Rodd
Melbourne Water manages over 210 retarding basins across Greater Melbourne ranging in size from 4ML to 4700 ML with embankment heights from 0.3m to 10m. Over the years the basins have been designed and constructed by a range of different owners and authorities. Varying design and construction standards with the majority of retarding basins generally being located in highly urbanised areas, has resulted in Melbourne Water having a large portfolio of assets that have potential to pose a significant risk to the downstream communities they are designed to protect.
High level hazard category assessments completed over the last10 years identified that approximately 90 structures were either High or Extreme hazard categories based on the ANCOLD Guidelines on Assessment of the Consequences of Dam Failure.
In an attempt to identify retarding basins requiring priority consideration for remedial works Melbourne Water embarked on a process of completing a dam safety risk assessment for five of the retarding basins in accordance with the ANCOLD Guidelines on Risk Assessment. The objective of the risk assessment was to develop an understanding of the key risk issues that might affect retarding basins as distinct from water supply storages, identify potential remedial works and develop a prioritised risk management strategy for the five basins considered. In completing the risk assessment there was also significant discussion about ways to streamline the process to allow assessment of the remaining basins.
This paper details the results obtained from the risk assessment, investigates the application of the base safety condition and implementation of a risk management strategy. It also looks at similarities between sites to enable common upgrades to be implemented across the range of retarding basins. This paper also discusses the need for guidelines specific to retarding basins to be developed.
How do you solve a problem like retarding basins? An asset owner’s perspective
-
$15.00
Papers 2011
2011 – Towards increased clarity in the application of ALARP
Learn moreRoger Vreugdenhil, Peter Hill, Siraj Perera, Susan Ryan
All Australian water authorities have in place dam safety programs that seek to ensure the ongoing safety and serviceability of their dams along with the benefits they secure for the wider community. Many have progressed multiple dam safety upgrades over the past decade and embraced risk assessment as a helpful tool in prioritising upgrade investment.
The ANCOLD Guidelines on Risk Assessment (2003) have been applied across the country and, coupled with State regulation, have supported dam owner efforts in reducing risks below the ANCOLD “Limit of Tolerability”. However, it is generally acknowledged that in their current form, the ANCOLD guidelines provide limited guidance to dam owners for determining appropriate levels of risk reduction and timing of dam safety improvements. This has contributed to a range of guideline interpretations and inconsistency in subsequent dam safety investment decisions across Australia. Having achieved priority risk reduction, a number of owners are beginning to assess their dams against the ALARP principle, bringing dam safety investment within an owner’s portfolio into more direct competition with other important and urgent organisational investment decisions.
This paper outlines the outcomes of a recent study commissioned by the Victoria Department of Sustainability and Environment into risk reduction principles and the application of ALARP by a number of Australian and international dam owners and regulators, hazardous industry owners and regulators, and the interaction of ALARP with whole-of-organisation investment. The paper highlights the study process and significant points of interest regarding risk reduction principles and current application of ALARP and some options for refinement and clarity.
Towards increased clarity in the application of ALARP
Learn more -
$15.00
Papers 2011
2011 – Investigating the Piping Risk Associated with Seepage at Monbulk Saddle Dam of Silvan Reservoir, Victoria
Learn moreMonique de Moel, Mark Arnold, Gamini Adikari
Monbulk Saddle Dam, built in 1929, is one of two saddle dams located at the southern end of Silvan Reservoir, near the township of Monbulk, Victoria. The saddle dam is a 5.3m high earthfill embankment with a 230mm wide, centrally located, concrete core wall. The reservoir retained is located in the valley of Stonyford Creek, and impounds approximately 40,500 ML of water at FSL.
Excessive seepage at the right abutment of Monbulk Saddle Dam has been an issue since the early 1970’s. The reservoir has been operating with a level restriction since then to reduce the seepage flows. However; this restriction limits the operational flexibility of the storage. Early investigations concluded that the most likely mechanism for these excessive seepage flows was a defect in the concrete core wall.
Melbourne Water Corporation, (the owner and the operator of the reservoir), undertook a risk assessment for Silvan Reservoir as part of a review of its dams asset portfolio. Based on the information then available, the risk assessment was undertaken using the criteria and guidelines developed by ANCOLD. The result was that the piping risks associated with the seepage from the west abutment at Monbulk Saddle Dam was unacceptable. The risk assessment Panel also cast doubt on the likelihood of the seepage being caused by a defect in the concrete core wall. Melbourne Water therefore engaged SMEC Australia to investigate the likely causes and mechanisms for this seepage and to develop suitable remedial measures for the dam.
The investigations have included a desktop review of historical information, test pit investigations, Sonic borehole drilling, dynamic cone penetration tests, an infrared thermal imaging investigation and an electromagnetic groundwater seepage flow mapping investigation.
These investigations have shown that the most likely cause of the seepage is the presence of permeable foundation layers located beneath and around the existing core wall as the core wall does not extend over the full length of the embankment and becomes shallower towards the abutments.
To satisfy the ALARP principle; risk reduction remedial works Concept Designs are being developed and reviewed.