2017 – Tailings Dam Failures – Lessons Learned and Some Recommendations
Hongyu Li
Although the total tailings dam failure frequency peaked in 1960s through 1980s, the failure rate of significant tailings dams has not dropped. The significant tailings dam failures the mining industry experienced in the recent history include: Merriespruit, South Africa, 1994; Los Frails, Spain, 1998; Kolontár, Hungry, 2010; Mount Polley, Canada, 2014; and Samarco, Brazil, 2015. The dam failures may be due to inadequate design, poor construction and inappropriate operations.This paper discusses the lessons learned and some recommendations and good practices to reduce the tailings dam failure risks. It addresses existing issues and provides some recommendations in risk based design, water management-integrity of facilities and water balance modelling, loading rates, tailings farming, adequate governance and roles and responsibilities of designers and nominated engineer.
$15.00
Now showing 1-12 of 47 2981:
Related products
-
$15.00
2017 Papers
2017 – Comparing the New Rare Design Rainfalls with CRCFORGE Estimates
Learn moreC.Jolly and J.Green
New rare design rainfalls were released for Australia in February 2017, for durations from one to seven days and probabilities from 1in 100Annual Exceedance Probability (AEP) up to 1 in 2000 AEP.The differences between the previous rare design rainfalls using estimated Cooperative Research Centre –FOcussed Rainfall Growth Estimation (CRC-FORGE) method and the new rare design rainfall estimates vary with location, duration and probability. In this paper, these differences are explored spatially through the use of national maps, comparing percentage change between the two datasets for selected durations and probabilities. Before this comparison with the new rare design rainfalls could be completed, the State-basedestimates had to be resampled and aggregated to form a national data set for Australia.For rare design rainfalls, it is often the catchment values that are required to determine the gross rainfall for design purposes. The impact of the revised areal reductions factors and rare design rainfalls is explored through case study catchments in Tasmania.
Learn more -
$15.00
2017 Papers
2017 – An Updated National Seismic Hazard Assessment for Australia: Are We Designing for the Right Earthquakes?
Learn moreT. Allen, J. Griffin, M. Leonard, D. Clark and H. Ghasemi
Geoscience Australia (GA) has embarked on a project to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project.The draft NSHA18 update yields many important advances on its predecessors, including: 1) calculation in a full probabilistic framework using the Global Earthquake Model’s OpenQuake-engine; 2) consistent expression of earthquake magnitudes in terms of moment magnitude, MW; 3) inclusion of epistemic uncertainty through the use of alternative source models; 4) inclusion of a national fault-source model based on the Australian Neotectonic Features database; 5)the use of modern ground-motion models; and 6)inclusion of epistemic uncertainty on seismic source models, ground-motion models and fault occurrence and earthquake clusteringmodels.The draft NSHA18 seismic design ground motions are significantly lower than those in the current (1991-era) AS1170.4–2007 hazard map at the 1/500-year annual ground-motion exceedance probability (AEP) level. However, draft values at lower probabilities (i.e., 1/2475-year AEP) are entirely consistent,in terms of the percentage area of land mass exceeding different ground-motion thresholds,with other Stable Continental Regions(e.g.,central & eastern United States). The large reduction in seismic hazard at the 1/500-year AEP level has led to engineering design professionals questioning whether the new draft design values will provide enough structural resilience to potential seismic loads from rare large earthquakes. This process underscores the challenges in developing national-scale probabilistic seismic hazard analyses (PSHAs)in slowly-deforming regions, where a 1/500-year AEP design level is likely to be much lower than theANCOLD Maximum Credible Earthquake (MCE) ground motions. Consequently, a robust discussion among the Standards Australia code committee, hazard practitioners and end users is required to consider alternative hazard and/or risk objectives for future standards.Site-specific PSHAs undertaken for owners and operators of extreme and high consequence dams general-ly require hazard evaluations at lower probabilities than for typical structural designas recommended in AS1170.4.However, modern national assessments, such as the NSHA18, can provide a benchmark in terms of recommended seismicity models, fault-source models, ground-motion models, as well as hazard values, for low-probability site-specific analyses.With a new understanding of earthquake processes in Australia leading to lower ground-motion hazard values for higher probability events (e.g.,1/500-year AEP), we should also ask whether the currently recommended design probabilities provide an acceptable level of seismic resilience to critical facilities (such as dams)and regular structures.
Learn more -
$15.00
2017 Papers
2017 – The Hamata Tailings Dam Design and Construction at the Hidden Valley Mine in Papua New Guinea
Learn moreMark Stephen Rynhoud, David Johns and Len Murray
The Hamata tailings storage facility at the Hidden Valley mine is being constructed in a remote, high rainfall, tropical environment in a mountainous region of Papua New Guinea. Implementation of the design hasrequired adapting the design in response to various challenges encountered on the site during the ongoing construction period, based on observations by the designers and site monitoring data which is continuously collected and compared against design assumptions. This paper describes some of the design and construction modifications which have been implemented since construction of the tailings facility started and provides a case history of some of the challenges facing designers and construction crews when mining in remote, tropical conditions.
Learn more -
2017 Papers
2017 – Certainty in Uncertainty: Navigating Environmental Impact Assessment Regulatory Processes
Learn moreGeraldine Squires
There is increased pressure from stakeholders for projects to include evaluation of emerging broader development issues within the environmental assessment process. These emerging issues are not well documented or understood and at the forefront of untested preliminary government policy positions.
Agencies expect proponents to invest in evaluating these matters outside of typical assessment practices. Requests are made late in the evaluation and approval process.Assessmen involves matters not directly related to the project or within the proponent’s control and occurs late in the project development cycle.
The Lower Fitzroy River Infrastructure Project (LFRIP) was identified through the Central Queensland Regional Water Supply Study in 2006, as a solution to secure future water supplies for the Rockhampton, Capricorn Coast and Gladstone regions. The Gladstone Area Water Board and SunWater Limited, as proponents, propose to raise the existing Eden Bann Weir and construct a new weir at Rookwood on the Fitzroy River in Central Queensland.
The LFRIP environmental impact statement (EIS) was approved, subject to conditions, by the Queensland Coordinator-General in December 2016 and the Commonwealth Minister for the Environment and Energy in February 2017. Achieving conditions that will realise positive environmental outcomes while simultaneously achieving project objectives, particularly with regard to timeframes and costs, was not without its challenges.
The EIS was developed in accordance with the requirements of the State Development Public Works Organisation Act 1971 (Qld) and the Commonwealth’s Environment Protection and Biodiversity Conservation Act 1999, including an extensive stakeholder consultation programme. These regulatory requirements are well understood and applied to projects as normal accepted practice. They ensured that potential project impacts and benefits were identified, that appropriate levels of effort were applied to investigations to establish baseline conditions and that risks to and impacts on environmental (including social and cultural) matters were adequately mitigated and managed.
The environment is not static. Emerging issues and perceptions results in regulation and policy changes in response to political and social drivers. During the development of the EIS both new legislation and new policies were imposed on the project.New legislation resulted in additional assessment around matters previously considered mitigated and managed (fish passage). New legislation introduced new matters for assessment (connectivity). Collaboration and engagement with stakeholders were key to understanding the applicability of these elements to the project and for developing an approach to address the legislative requirements late in the project’s development and assessment process.
In Queensland,policy is emerging to mitigate and manage impacts of development on the Great Barrier Reef World Heritage Area’s universal values. The EIS was required to address the direct project impacts on water quality and the impacts arising because of the LFRIP (facilitated development). Water secured by the LFRIP is for urban, industrial and agricultural purposes. Urban and industrial developments are well regulated and subject to specific environmental approvals processes. Use of water for agricultural purposes, intensive irrigated agriculture in particular,is less regulated. Policies developed are reactive and require individual projects to address these impacts.In the absence of regulatory guidelines for assessment of consequential impacts, the project adopted a collaborative approach. The proponents established a working group, including State and Commonwealth technical agencies. This allowed for robust and scientifically defendable methodologies to be developed and agreed upfront. Streamlining the approach by including key decision makers assisted in managing expectations and focused the assessment on realistic and achievable outcomes relative to the project. The result was defendable outcomes allowing timely decision making and avoided rework as much as possible.
This paper describes developments in environmental assessment relating to new and augmented weirs.
Learn more -
$15.00
2017 Papers
2017 – Spillway Concrete Scour Detection and Repair at the Base of an 84m High Arch Dam
Learn moreOliver Giudici
A common concern for large spillways is erosion of the receiving plunge pool and potential impacts on the stability of the dam.Devils Gate Dam is an 84m high, double curvature arch concrete dam, located in northern Tasmania and constructed between 1968 and 1970.The full 134m long crest is designed as a free-overflow spillway and spill flows impact the downstream valley sides and plunge pool below, where energy is dissipated to reduce riverbank erosion downstream.To protect foundation rock,the plunge pool and large portions of the valley sides were concrete lined with 450mm thick reinforced and anchored concrete. During spill events the area is inundated by up to 12m of tail-water.In 2016 damage to the plunge pool concrete was discovered by divers during a special inspection of the impact areas, but poor visibility limited the understanding of the extent and severity. Subsequent investigations, including detailed sonar scanning, improved the understanding but it was not until the plunge pool was fully dewatered that the full extent of the damage was quantified.The damage commenced around 35m downstream of the dam arch and consisted of approximately 330 square metres of moderately to severely eroded concrete and exposed, deformed, and in some areas completely removed reinforcing bars. The most significant feature was a penetration through the concrete up to 2.5m into the foundation rock.A number of stressed anchor heads were also damaged or destroyed.A full appreciation of the damage necessitated the decision for immediate repairs given the impending power station refurbishment (commencing January 2018) which will subject the plunge pool to nine months of constant spill.This paper outlines the diving and sonar investigations undertaken in 2016, discusses the challenging tasks of dewatering the plunge pool and gaining access through the narrow canyon, and presents the physical works to strengthen the damaged areas.It discusses the difficulty of identifying and treating such damage, and serves as a cautionary tale for other owners who have fully submerged plunge pools downstream of spillways.
Learn more