2017 – Application of Risk Assessment to an Emergency Levee Design in an Urban Environment
Petros Armenis, Malcolm Barker, Peter Christensen, Graham Harrington
The Canterbury Earthquake Sequence in September 2010 and February 2011 caused large areas of land to change by differing amounts throughout Christchurch, New Zealand. Land levels fell by more than 300 mm in some areas. This increased flood risk in the tidal reaches of the Avon River. Urgent repairs were completed with the objective to restore the tidal river defences to a crest level equivalent to a 1% AEP tide level. This work needed to be completed prior to impeding spring tides.
The levees will be required for up to 20 years and then probably be rebuilt on a new alignment. To better understand the risks associated with the ongoing reliance of the levees for flood protection in the interim, a risk assessment was undertaken using conventional Australian National Committee on Large Dams (ANCOLD) practices and levee design procedures. Careful consideration was made to the performance of the existing levees under seismic, flood and tidal loading from which the societal and individual risk profiles were derived. The work included the following:
- The identification of critical sections along both sides of the 11 km levee river alignment through consideration of the foundation and embankment construction
- Combining seismic events with tides and flood events with tides using levee lifetimes of 1, 5, 10 and 20 years
- Consideration of overtopping failure and piping through the levee embankment, foundation or tree roots and narrowed embankment sections owing to trees being blown over
- Application of the International Levee handbook (CIRIA 2013) and the “Piping Toolbox” (USACEet al 2008
- Evaluation of risk reduction with upgrade options
This paper will present the levee design and the process applied for the analysis of the levee and the upgrade options selection
$15.00
Related products
-
$15.00
Papers 2017
2017 – An Updated National Seismic Hazard Assessment for Australia: Are We Designing for the Right Earthquakes?
Learn moreT. Allen, J. Griffin, M. Leonard, D. Clark and H. Ghasemi
Geoscience Australia (GA) has embarked on a project to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project.The draft NSHA18 update yields many important advances on its predecessors, including: 1) calculation in a full probabilistic framework using the Global Earthquake Model’s OpenQuake-engine; 2) consistent expression of earthquake magnitudes in terms of moment magnitude, MW; 3) inclusion of epistemic uncertainty through the use of alternative source models; 4) inclusion of a national fault-source model based on the Australian Neotectonic Features database; 5)the use of modern ground-motion models; and 6)inclusion of epistemic uncertainty on seismic source models, ground-motion models and fault occurrence and earthquake clusteringmodels.The draft NSHA18 seismic design ground motions are significantly lower than those in the current (1991-era) AS1170.4–2007 hazard map at the 1/500-year annual ground-motion exceedance probability (AEP) level. However, draft values at lower probabilities (i.e., 1/2475-year AEP) are entirely consistent,in terms of the percentage area of land mass exceeding different ground-motion thresholds,with other Stable Continental Regions(e.g.,central & eastern United States). The large reduction in seismic hazard at the 1/500-year AEP level has led to engineering design professionals questioning whether the new draft design values will provide enough structural resilience to potential seismic loads from rare large earthquakes. This process underscores the challenges in developing national-scale probabilistic seismic hazard analyses (PSHAs)in slowly-deforming regions, where a 1/500-year AEP design level is likely to be much lower than theANCOLD Maximum Credible Earthquake (MCE) ground motions. Consequently, a robust discussion among the Standards Australia code committee, hazard practitioners and end users is required to consider alternative hazard and/or risk objectives for future standards.Site-specific PSHAs undertaken for owners and operators of extreme and high consequence dams general-ly require hazard evaluations at lower probabilities than for typical structural designas recommended in AS1170.4.However, modern national assessments, such as the NSHA18, can provide a benchmark in terms of recommended seismicity models, fault-source models, ground-motion models, as well as hazard values, for low-probability site-specific analyses.With a new understanding of earthquake processes in Australia leading to lower ground-motion hazard values for higher probability events (e.g.,1/500-year AEP), we should also ask whether the currently recommended design probabilities provide an acceptable level of seismic resilience to critical facilities (such as dams)and regular structures.
Learn more -
$15.00
Papers 2017
2017 – The Design Flood Frequencies for My Dam Have Changed – Why?
Learn moreMark Pearse, Peter Hill
Risk assessments for large dams and the design of upgrades are often dependent on estimates of peak inflows and outflows well beyond those observed in the historic record. The flood frequencies are therefore simulated using rainfall-runoff models and design rainfalls. The recent update of Australian Rainfall and Runoff (ARR) has revised the design rainfalls used to model floods that are of interest to dam owners. This will change the best estimate of flood frequencies for some dams. However, for most dams the impact of revised design rainfalls on flood frequencies is small compared to other factors that can change (independent of dam upgrades). These include model re-calibrations to larger floods, changes to operating procedures that affect the drawdown distribution and improvements in how the joint probabilities of flood causing factors are simulated. In this paper, we look at how the design flood frequencies for some of Australia’s large dams have changed, the reasons for this and then identify five key questions for dam owners to ask to aid assessment of whether the hydrology for a dam should be reviewed
Learn more -
$15.00
Papers 2017
2017 – Tropical Cyclone Debbie – A SunWater Experience
Learn moreMichael Hughes, James Stuart
Tropical Cyclone Debbie (TC Debbie) formed in the Coral Sea on Saturday 25th March, 2017 and developed into a category 4 system that crossed the coast near Proserpine, Queensland with the eye passing very close to Peter Faust Dam. TC Debbie, later becoming Ex-TC Debbie embarked on a tour of SunWater infrastructure (See Figure 1). Of 23 referable dams managed or owned by SunWater in Queensland, only 3 had no inflows with spills resulting at twelve locations. The paper describes the varied experiences of SunWater with relation to preparation for, and operations during TC Debbie. Some key areas of interest to other dam owners include;
- Uncertainty around forecasts;
- Flash flood destruction of key hydrographic equipment;
- A review into dam operation;
- Returning a spillway construction site touse;
- A ‘direct hit’ by the eye of TC Debbie over Peter Faust Dam catchment;
- Successful prediction of Cyclone rainfall temporal patterns; and
- A record flood influenced by land use with learnings for flood risk assessments.
-
$15.00
Papers 2017
2017 – Understanding Victorian Local Government Authority Dams and Retarding Basins
Learn moreMonique Eggenhuizen, Peter Buchanan, Reena Ram, Tusitha Karunaratne
The Department of Environment, Land, Water and Planning (DELWP) has a regulatory role for the safety of dams under the Water Act 1989 (Act) and is the control agency for dam related emergencies. Local Government in Victoria is divided up between 79 LocalGovernment Authorities (LGAs), each responsible for administering local infrastructure and community services such as roads, drainage, parks etc. Current records indicate that 42 of the 79 LGAs own or manage up to 435 dams and retarding basins.Many of these assets, which include a mix of old water supply dams, ornamental lakes and retarding basins, have been accumulated by LGAs over many years as a result of asset transfers and conversions, land development projects, flood mitigation programs and opportunistic acquisitions by the transfer of land. DELWP engaged GHD to assist and provide advice to the LGAs to significantly improve and update knowledge on LGA dams and retarding basins. The objective of this project is to ascertain where the State’s LGA dams and retarding basins are located, what risks they might pose to communities and infrastructure, what to consider during emergency management planning and response, and to provide owners with the essential management tools and procedures to effectively manage these assets, if these are not in place already.The outcome of this project was to support LGAs to improve management of their dams and retarding basins. It aimed to do this by assisting LGAs with the development of basic dam safety programs that will enable LGAs to more effectively manage their portfolios of dams and retarding basins in terms of ongoing maintenance, dam surveillance and emergency planning and response, and demonstrate due care.This project had a number of key challenges. These included the requirement to process and assess a large number of sites within a small timeframe whilst achieving good value for money,without compromising DELWP’s objectives. A number of efficient methods were adopted during this project particularly during the initial data gathering process, identifying those dams which needed to be inspected based on embankment heights, reservoir capacity and consequences, rapid preliminary assessment of consequences, the development of effective templates for the site inspections, and a method of applying qualitative risk assessments, applicable to the majority of the dams, allowing a consistent assessment of the status of each dam and damsafety documentation.The methods discussed(although developed specifically for the Victorian LGA dams portfolio)provide a sound basis for a screening tool to assess a large number of smaller dams in an efficient manner and quickly identify higher consequence category dams requiring attention. This method could easily be modified and adapted to be applied to similar portfolios of dams.
Learn more -
$15.00
Papers 2017
2017 – Tailings Dam Failures – Lessons Learned and Some Recommendations
Learn moreHongyu Li
Although the total tailings dam failure frequency peaked in 1960s through 1980s, the failure rate of significant tailings dams has not dropped. The significant tailings dam failures the mining industry experienced in the recent history include: Merriespruit, South Africa, 1994; Los Frails, Spain, 1998; Kolontár, Hungry, 2010; Mount Polley, Canada, 2014; and Samarco, Brazil, 2015. The dam failures may be due to inadequate design, poor construction and inappropriate operations.This paper discusses the lessons learned and some recommendations and good practices to reduce the tailings dam failure risks. It addresses existing issues and provides some recommendations in risk based design, water management-integrity of facilities and water balance modelling, loading rates, tailings farming, adequate governance and roles and responsibilities of designers and nominated engineer.
Learn more