2021 – Quantifying the minimum epistemic uncertainty required PSHA input models
Dr Mark Leonard
The quantification of the 85% and 95% hazard fractiles, as required by the ANCOLD 2019 Guidelines for design of dams, is investigated. It is found that there are four independent sources of uncertainty in the PSHA input models that have a significant effect on the hazard. So all four need to be quantified, particularly for Extreme and High A consequent dams. It is also found that the uncertainty of many of the other parameters, which are routinely included in probabilistic seismic hazard assessments, have minimal effect on either the mean or the higher fractiles so do not necessarily need to be routinely included. The complexity of the input models required to satisfy the new standards are substantially higher than those routinely used in prior decades.
$15.00
Related products
-
$15.00
Papers 2021
2021 – Poster Paper – Aspects considered in the selection of individual risk tolerability threshold for referable dams in Queensland
Learn moreChris Nielsen, Irene Buckman
As individuals, we are concerned about how a risk affects us and the things we value
personally. We may be willing to live with a risk if it secures us certain benefits and if the
risk is kept low and clearly controlled. We are less tolerant of risks over which we have little
control.ANCOLD’s risk assessment guideline (2003) identifies an individual risk threshold as being
one where “the dam safety risk to an individual should be close to the average background
risk of the population”. This is a principle of equity, where “all individuals have
unconditional rights to certain levels of protection” (HSE, 2001). The definition of
population at risk applied to Queensland’s referable dams (DNRME, 2018), being
individuals within a residence or workplace and typically not participating in any risky
activities such as driving a vehicle or walking through flooded waters, provides further
justification of this right.In practice addressing societal risk tolerances and duty of care considerations may result in
individual risks being substantially lower than the thresholds. This may not always be the
case and, irrespective, should not distort the purpose of the individual risk tolerance test;
the principle of equity that drives individual risk tolerability has foundations in our societal
values and is easily and widely understood as a core value. This should be succinctly
described when justifying expenditure on risky infrastructure such as dams.
This poster describes aspects to consider when selecting a threshold individual risk
tolerance. Subject to site-specific considerations of the particular age group of individuals
most at risk, the wider benefit of the dam to society and ALARP, a single threshold
individual risk tolerance of less than 10-5 per annum (or 1 in 100,000 years) would appear
reasonable.The aspects described are elaborated in the revised Guidelines on Safety Standards for
Learn more
Referable Dams, soon to be published on the Queensland Government website (RDMW,
2021). -
$15.00
Papers 2021
2021 – Improving Survey Monitoring Techniques – Real-Time Monitoring Systems
Learn moreThomas Ridgway, Nic Polmear, Hugh Tassell
All industries, inclusive of the dams and tailings industry use some form of monitoring and reporting to confirm items or services are functioning properly or correct. In engineering, we seek to use both manual and automated systems to both qualifiably and quantifiably define the suitability of a process or structure/item. As the dams industry continues to evolve with technology and with ongoing developments in stewardship expectations for both water dams and tailings dams the industry is beginning to move into automation of their instrumentation systems. This process has recently been undertaken at a mine in NSW with the development of both a near real-time survey monitoring and visualisation system as well as a monthly photographic assessment system. This paper will set out the process undertaken to assess the surveillance monitoring requirements for the mine, details of the design, implementation of a near real-time monitoring system and the difficulties associated with the work.
Learn more -
$15.00
Papers 2021
2021 – Terms of Reference for Technical Review Panels and their technical assurance for dam projects
Learn moreChris Nielsen, Ron Guppy, Gary Hargraves, Robert Fowden
Dam safety upgrade projects of major dams typically involve a large capital investment. It is important that expenditure decisions are based on sound criteria, both technical and non-technical. Independent peer review of technical matters plays a key role in meeting design, construction and safety objectives within practical financial constraints and assuring robust, resilient and reliable project outcomes.
An independent technical review is recommended for all dam projects.
The Queensland dam safety regulator has developed guidelines associated with technical review for dam safety projects that considers scope and limitations, expertise and governance. The guidelines are informed by literature, recent projects, a commission of inquiry, internal and external review and industry feedback. The guidelines are being implemented across major dam safety upgrade business cases through preparation of terms of reference by the Queensland Government’s business planning and implementation entities, who maintain the responsibility of providing assurance to state government projects, as well as the state’s major dam owners.
The terms of reference, supported by the underlying principles in the guidelines, provide a platform for consistent and appropriate application of technical assurance to dam projects in Queensland. Among other matters, governance is highlighted as a critical factor for success as well as clarity of the roles, responsibilities and reporting lines of all parties. The application of both guidelines and terms of reference to recent projects is discussed.
Learn more -
$15.00
Papers 2021
2021 – An Overview to Mechanical Behaviour of Rockfill, Focus on Numerical Modelling using DEM
Learn moreReza Asadi, Mahdi M. Disfani, Behrooz Ghahreman-Nejad
Rockfill, a granular material with particle sizes usually in the range of 2 cm to 1 m, is commonly used as the main construction material in a range of civil engineering applications such as water and tailings retaining embankment dams. Rockfill’s complex behaviour mainly stems from its inherently large particle size grading on one hand and its discrete and heterogeneous nature on the other hand. The investigation of mechanical behaviour of rockfill requires expensive and time-consuming laboratory testing in large apparatuses, which are scarce. This highlights the importance of numerical investigation techniques such as Discrete Element Method (DEM) in better understanding of rockfill properties. In this paper initially a concise and comprehensive overview of effective parameters on Rockfill behaviour are presented followed by the discussion on analytical and numerical methods for investigation of the mechanical behaviour of Rockfill.
Finally, a combination of Replacement and Bonded-Particles (clusters) methods is proposed so the effects of particle shape and breakage, which are among the most effective parameters, can be adequately investigated. The preliminary results of DEM modelling are also presented which show a good agreement with the expected micro-mechanical behaviour of rockfill.
Learn more -
$15.00
Papers 2021
2021 – A Review of Victoria’s Dam Safety Regulatory Framework
Learn moreReena Ram, Siraj Perera, Mark Pearse, John Pisaniello, Shane McGrath, Joanne Tingey-Holyoak, Peter Hill
Dam construction in Victoria commenced in the 1850s and there are over 8,000 dams currently regulated by the Department of Environment, Land, Water and Planning (DELWP). Dam ownership spans across state owned water utilities and local government authorities to privately owned hydro-electricity generators and farmers.
Victoria was one of the first states in Australia to adopt risk-informed principles in the management and regulation of dam safety. A recent review of the State’s dam safety regulatory framework included a comparative analysis of Victoria’s dam safety arrangements with other regulatory regimes within Australia and overseas, including a total of 16 jurisdictions. A similar review was conducted in 2010.
The objective of the 2019 review was to examine the effectiveness of dam safety regulation in managing dam safety risks in Victoria and to assess the extent that dam safety regulation was consistent with good practice so that improvement opportunities could be identified.
This paper discusses the processes adopted in comparing various regulatory models, identification of good international practices and opportunities to achieve improved public safety outcomes for dam owners and regulators. In particular, it outlines how the State’s journey in progressively reducing dam safety risks over the years can be further strengthened.