2021 – An Overview to Mechanical Behaviour of Rockfill, Focus on Numerical Modelling using DEM
Reza Asadi, Mahdi M. Disfani, Behrooz Ghahreman-Nejad
Rockfill, a granular material with particle sizes usually in the range of 2 cm to 1 m, is commonly used as the main construction material in a range of civil engineering applications such as water and tailings retaining embankment dams. Rockfill’s complex behaviour mainly stems from its inherently large particle size grading on one hand and its discrete and heterogeneous nature on the other hand. The investigation of mechanical behaviour of rockfill requires expensive and time-consuming laboratory testing in large apparatuses, which are scarce. This highlights the importance of numerical investigation techniques such as Discrete Element Method (DEM) in better understanding of rockfill properties. In this paper initially a concise and comprehensive overview of effective parameters on Rockfill behaviour are presented followed by the discussion on analytical and numerical methods for investigation of the mechanical behaviour of Rockfill.
Finally, a combination of Replacement and Bonded-Particles (clusters) methods is proposed so the effects of particle shape and breakage, which are among the most effective parameters, can be adequately investigated. The preliminary results of DEM modelling are also presented which show a good agreement with the expected micro-mechanical behaviour of rockfill.
$15.00
Related products
-
$15.00
Papers 2021
2021 – Designing dam safety emergency exercises in an inter-related risk environment to build resilience
Learn moreRichard Mannix, Michael Cawood, Joseph Matthews, Siraj Perera
Guidance material available to dam owners both domestically and internationally on testing dam safety emergency plans (DSEP) and running exercises is relatively general in nature. Guidance specific to dams that assists owners to design risk informed exercise scenarios tailored to their dam(s) total risk profile and the broader context in which the consequences of dam and operational safety failures would materialise, is limited.
This paper presents a framework that guides dam owners through a progressive scenario development process that enables the systematic identification of both dam and operational safety matters that require exploration as part of DSEP exercising. This level of rigour in guidance material has, until now, been missing and is particularly relevant in the context of dam owners demonstrating due diligence and SFAIRP imperatives while also bringing dam safety management closer to achieving the safety case.
Learn more -
$15.00
Papers 2021
2021 – Recommended skills for dam safety management personnel
Learn moreChris Nielsen
Management of dams requires the use of experienced dam engineers and other competent personnel familiar with all relevant basic principles, technical guidelines, articles and manuals. This requires appropriate qualifications, registrations and adequate knowledge and experience relevant to the type of dam and the task required.
Engineering services in Queensland must comply with the Professional Engineers Act 2002 which requires a registered professional engineer of Queensland (RPEQ) to undertake or directly supervise an engineering service. Attributes in addition to RPEQ are recommended for personnel responsible for dam safety management. Inputs are often required from non -engineering technical specialists, such as geologists. Supervising these inputs in the context of meeting the Professional Engineers Act 2002 should be considered.
A matrix of skills for dam safety management personnel has been prepared as part of the Queensland dam safety management guideline and subject to extensive stakeholder feedback in its preparation. The matrix consists of a list of roles typically required for dam safety management and, for each role, a corresponding set of recommended core attributes.
Learn more -
$15.00
Papers 2021
2021 – The Critical Link between Risk Assessments and Critical Controls
Learn moreRyan Singh, Jiri Herza, James Thorp, Michael Ashley
Performance-based risk-informed decision making is an underlying principle of the Global Industry
Standard on Tailings Management (GISTM). While owners make significant efforts to align with this
principle, commonly used risk assessment and management practices in the mining industry have largely been based on the HSE principles, which consider more frequent, lower consequence incidents.As a result, the existing risk assessment frameworks do not provide the owners with a comprehensive understanding of the risk profiles of their tailings storage facilities (TSFs). Without the understanding of a facility’s risk profile, the owners cannot appreciate how changes to their facility, processes and operational activities may impact the risk profile. A large step-change in thinking is therefore required in risk assessment practices for the owner to align their TSF management with GISTM requirements.
Beyond risk assessments, the mining industry has other valuable concepts to manage the safety of their tailings management practices, such as Critical Controls, however, commonly used risk assessment and management practices do not incorporate these concepts.
This paper explores commonly used risk assessment practices and the concepts of Critical Controls. It proposes how these concepts can be linked, with Critical Controls being embedded in the risk assessment process. The outcomes of linking these concepts result in an estimation of the effectiveness of the Critical Controls and how they can be improved to demonstrably reduce the risk presented by a TSF. A case study has been included to demonstrate the benefits of linking risk assessment with Critical Controls and how owners can readily identify deficiencies and efficiently manage the risk profiles of their facilities.
Learn more -
$15.00
Papers 2021
2021 – Poster Paper – Aspects considered in the selection of individual risk tolerability threshold for referable dams in Queensland
Learn moreChris Nielsen, Irene Buckman
As individuals, we are concerned about how a risk affects us and the things we value
personally. We may be willing to live with a risk if it secures us certain benefits and if the
risk is kept low and clearly controlled. We are less tolerant of risks over which we have little
control.ANCOLD’s risk assessment guideline (2003) identifies an individual risk threshold as being
one where “the dam safety risk to an individual should be close to the average background
risk of the population”. This is a principle of equity, where “all individuals have
unconditional rights to certain levels of protection” (HSE, 2001). The definition of
population at risk applied to Queensland’s referable dams (DNRME, 2018), being
individuals within a residence or workplace and typically not participating in any risky
activities such as driving a vehicle or walking through flooded waters, provides further
justification of this right.In practice addressing societal risk tolerances and duty of care considerations may result in
individual risks being substantially lower than the thresholds. This may not always be the
case and, irrespective, should not distort the purpose of the individual risk tolerance test;
the principle of equity that drives individual risk tolerability has foundations in our societal
values and is easily and widely understood as a core value. This should be succinctly
described when justifying expenditure on risky infrastructure such as dams.
This poster describes aspects to consider when selecting a threshold individual risk
tolerance. Subject to site-specific considerations of the particular age group of individuals
most at risk, the wider benefit of the dam to society and ALARP, a single threshold
individual risk tolerance of less than 10-5 per annum (or 1 in 100,000 years) would appear
reasonable.The aspects described are elaborated in the revised Guidelines on Safety Standards for
Learn more
Referable Dams, soon to be published on the Queensland Government website (RDMW,
2021). -
$15.00
Papers 2021
2021 – A tale of two sites, siting optimal fish passage location at Ewen Maddock Dam
Learn moreLindsay Millard, David T Roberts, Steven Cox, Andrew Berghuis, Anna Hams
Addressing historical impacts of waterway barriers on regional fisheries values is a major focus for fisheries regulators when assessing proposed water infrastructure projects such as dam safety improvements. To inform prudent investment decisions, it is essential to quantitatively determine the feasibility and benefits of various fish passage options to mitigate barrier effects. In Queensland, the regulatory frameworks require consideration of multiple options to achieve mitigation with the overarching goal to support and restore regional fish productivity. Addressing multiple objectives on large water infrastructure projects can be challenging, particularly for existing assets requiring retrofit solutions. There is a need to balance the requirements for dam safety, water supply reliability, while also mitigating the loss of fish habitat access upstream of barriers. Finding optimal fish passage solutions requires consideration of multiple options and using objective approaches that can weigh up the many aspects. The best solution may not always be the most obvious. Here we describe an approach that addresses multiple objectives through a novel off-site solution that provides increased benefit to the impacted fish community. Seqwater, Queensland,
The approach involved weighing up various fish passage options, informed by stochastic hydrologic
modelling to produce a range of probabilistic scenarios. 120 years of modelled water levels and discharges from the study site and the broader catchment, enabled an evaluation of the benefits and dis-benefits of different options in relation to dam safety, water supply reliability and fish migration opportunities. Inputs to the assessment process included fish habitat availability and migratory needs, capital and operational feasibility considerations. Numerous modelling scenarios were produced to assess a range of possible solutions, both on and off-site, to provide an objective weighting of the relative strengths of each scenario.In this instance, while an onsite option could be feasibly engineered, it would be costly and given the
hydrology of the system, would operate so infrequently as to provide limited opportunities for fish passage and minimal regional fisheries productivity benefits. The optimal solution found was to provide fish passage on a higher order stream within the same catchment area that has impacted fish migration and access to upstream habitats for the same fish community. This option improves fish habitat access to a larger proportion of the catchment and over a wide range of flow conditions, thus providing greater regional fisheries productivity outcomes.Our method demonstrated an objective approach to balancing multiple project objectives for dam
Learn more
improvements. The use of hydrologic modelling combined with fish migration and habitat information, found an optimal solution for regional fisheries productivity goals, while also balancing the dam safety and water supply reliability goals.