2021 – Active Fault Assessment for a Proposed Pumped Hydro Energy Storage Project in South Australia
T. I. Mote, N. Vitharana, L. Johnstone, and K. Illangakoon
In Australia, the consideration of faults in seismic design has been captured in recent ANCOLD Guidelines for Design of Dams and Appurtenant Structures for Earthquake. The Guidelines recommend proper characterisation of geologic setting, foundation conditions, seismotectonic setting, and identification of both active and neotectonic faults as input to the seismic design basis for dams in Australia.
A case-study is presented at the proposed Cultana Pumped Hydro Energy Storage Project in South
Australia, summarising a fault assessment in concert with reference design. The progressive assessment of a lineament to a possible active fault to ultimately a non-seismogenic fault, allowed insights in understanding active fault rupture risk and active fault implications as it pertains to siting a dam in Australia. It highlighted the need for proper characterisation of geologic setting and faults based on targeted geotechnical investigations and the challenges in phasing these with an aggressive design program. These insights are relevant to many other projects in Australia either in existence or being planned for construction.
$15.00
Now showing 1-12 of 37 3483:
Related products
-
$15.00
2021 Papers
2021 – Regulatory risk – a proposed framework for contractual accountability of the Crown of regulatory changes
Learn moreArnold Dix
Regulatory risk for large civil engineering projects such as dams and hydropower schemes can be larger than the engineering risks. The seriousness of project regulatory risks is rarely acknowledged publicly and almost never dealt with contractually. The recent adoption by the World Bank of the FIDIC/ITA Emerald Book contractual framework introduces geotechnical baseline reports as a contractual mechanism for managing ground risk in World Bank hydro projects. Regulatory risks created by government agencies and utilities due to changing project requirements can likewise be managed by adopting the concept of geotechnical baselines to regulatory impositions as a baseline report.
Government agencies changing regulatory burdens mid project can fairly be held accountable for the
burdens of those changes by establishing regulatory baselines at the earliest stages of a project. By
contractually embedding regulatory risk baselines, governments and their agencies can adjust their
payments to reflect the changed cost in delivering an agreed project caused by regulatory changes. In this way the compensation for delivering a project more closely aligns with its value and cost. A regulatory baseline report in reducing project exposure due to regulatory change driven costs is a new tool in more efficient and competitive project delivery.A transparent mechanism for costing regulatory change risk and apportioning it in accordance with pre agreed mechanisms, is an innovation of great use to the dam and hydropower sector.
Learn more -
$15.00
2021 Papers
2021 – Paradise Dam and its present and future impact on dam projects
Learn moreChris Nielsen, Ron Guppy, Donna Dunn, David Murray
Following several years of investigations and analysis a serious safety issue with the stability of the primary spillway during major flood events was identified at Paradise Dam that required urgent risk reduction works. The response to this safety issue was significant.
The Inspector General Emergency Management conducted a review into the effectiveness of emergency response if a dam safety event were to occur, taking into consideration process and communications to manage around 40,000 population at risk, comprised mostly of residents within the city of Bundaberg.
An essential works program to reduce the risk was urgently prepared then executed effectively within a calendar year. This short timeframe required significant and novel amendments to Queensland’s laws to bypass normal legislated process for such a major project.
The Paradise Dam Commission of Inquiry was established to identify the root cause of the issues, the facts and circumstances that contributed to them and recommendations to consider for future dam projects. All recommendations from the commission were accepted by the Queensland government and, following an extensive stakeholder engagement exercise, have been implemented through changes in policy and methodology and described in published guideline revisions.
For future dam projects the lessons learnt highlighted the need for early and ongoing engagement of
Learn more
independent technical review, project governance that is cognisant of risk and the ownership and capacity to bear of that risk, the need to consider testing to confirm critical design parameters and the need for an effective regulator. The essential works program has established a precedent for the timely and appropriate application of risk reduction measures. -
$15.00
2021 Papers
2021 – Application of joint probability design flood estimation in the Philippines and potential benefits in data sparse regions of Australia
Learn moreDavid Stephens, Phillip Jordan, Peter Hill, Tim Craig, James Woolley and Bill Hakin
As part of the design of a proposed new hydropower dam (the Alimit HPP), on the island of Luzon in the Philippines, design flood estimates have been prepared using a RORB Monte Carlo approach for events up to and including the Probable Maximum Flood. Compared with Australia, the Philippines is a relatively data sparse environment, with limited rainfall gauge records and even fewer streamflow gauging stations. As such, considerable effort was required to derive design rainfall inputs for Monte Carlo simulation, including rainfall depths as well as temporal and spatial patterns.
This project made use of a number of remotely sensed data sets, including 20 years of global half hourly gridded rainfall data from NASA and global gridded estimates of rainfall intensity-frequency-duration. As part of the project, these data sets were benchmarked against local records from Luzon as well as selected Australian data sets.
This paper sets out the process used to determine design flood estimates in the Philippines, as well as summarising the usefulness of these new data sets for potential application in data sparse regions of Australia.
Learn more -
$15.00
2021 Papers
2021 – Mundaring Weir, Stilling Basin and Outlet Works Risk Assessment
Learn moreSonel Reynolds, Alex Gower, Bob Wark
During the outlet works upgrade in 2017 it was found that the valve pit and stilling basin at Mundaring Weir were not founded on rock. Based on these observations and the arrangement of the spillway and outlet works, it was considered that during significant spillway overflow events, a high velocity jet could displace the stilling basin slabs, erode the underlying material, and progress to failure of the outlet pipe and valve pit. A comprehensive risk assessment was conducted to estimate the likelihood of stilling basin slab uplift, erosion of the underlying material, and failure of the outlet works. A geotechnical investigation was undertaken comprising drilling nine boreholes and a program of geophysical downhole logging. Computational Fluid Dynamic (CFD) modelling was used to determine the pressure fluctuations and turbulence intensity over the spillway slab which could lead to uplift. The erodibility of the rock mass material below the stilling basin slabs was assessed using the outcomes of the geotechnical investigations and CFD output, with analyses based on the Kirsten Index and eGSI. A net benefit analysis was conducted to assess whether preventative remedial works were justified. Through this process it was demonstrated that the business risk was low and risk reduction measures were not justified.
Learn more -
$15.00
2021 Papers
2021 – Designing dam safety emergency exercises in an inter-related risk environment to build resilience
Learn moreRichard Mannix, Michael Cawood, Joseph Matthews, Siraj Perera
Guidance material available to dam owners both domestically and internationally on testing dam safety emergency plans (DSEP) and running exercises is relatively general in nature. Guidance specific to dams that assists owners to design risk informed exercise scenarios tailored to their dam(s) total risk profile and the broader context in which the consequences of dam and operational safety failures would materialise, is limited.
This paper presents a framework that guides dam owners through a progressive scenario development process that enables the systematic identification of both dam and operational safety matters that require exploration as part of DSEP exercising. This level of rigour in guidance material has, until now, been missing and is particularly relevant in the context of dam owners demonstrating due diligence and SFAIRP imperatives while also bringing dam safety management closer to achieving the safety case.
Learn more