2020 – The Safety Case
Shane McGrath, Mark Arnold, Josh Rankin, Gavan Hunter
Greenvale Dam is a critical storage for the supply of potable water to Melbourne. The dam had been upgraded through current risk management techniques, and an ALARP assessment completed at that time. However, it was decided that a more comprehensive demonstration of ALARP was warranted to satisfy the dam owner’s duty of care. Since there is no comprehensive guidance in the dams industry for owners and their advisors to reference, the safety case approach used extensively in other hazardous industries was adopted. Considering the approaches used by Victoria’s Worksafe, the Institution of Engineers Australia and the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA), the key components of the safety case for Greenvale dam were identified then developed to provide a logical, structured and comprehensive argument for the safety of Greenvale Dam. This paper provides an overview of components of the safety case developed for Greenvale Dam, the use of safety cases for dams and where process improvements could be made.
$15.00
Now showing 1-12 of 14 3380:
Related products
-
$15.00
2020 Papers
2020 – Challenges in applying new guidelines to existing tailings dams projects
Learn moreMichael Ashley, John Phillips
New guidance and publications relating to tailings dams have been released recently by many jurisdictions across the world as an initial response to recent, well-documented, catastrophic tailings dam failures. The application of new guidelines retrospectively to existing tailings projects can introduce complex challenges, especially for sites with a long and often not well documented history. Challenges can be difficult to overcome while balancing time, cost and risk objectives.
This paper explores the impacts of changes between the 2012 and 2019 revisions of the ANCOLD Guidelines on Tailings Dams and potential implications for existing facilities.
The most significant update between the 2012 and 2019 revisions of the guidelines relating to design practices is the additional detail and guidance on seismic stability analyses and static liquefaction. Guidance on the application of new guidelines for tailings dam designers, owners and regulators is required to provide a consistent approach to manage the risk.
Learn more -
$15.00
2020 Papers
2020 – Some Challenges in Abutting the Dams in the Himalaya
Learn moreNeeta Arora, Prashant Agrawal, Yogendra Deva, Ravi Kumar
The tectono-lithologic complexities and the accompanying extreme mass wasting processes make the Himalaya a difficult terrain for river valley development projects envisaging dams and other diversion structures. Besides exceptionally thick riverbed deposits leading to management of deep foundations, abutting the dams often poses challenges in view of difficult ground conditions. The paper looks at three scenarios where the presence of highly decomposed strata, slumped mass and unconsolidated riverbed material led to serious problems in abutting the dams and invariably delayed the project completion. The design approach to special abutment issues is discussed in the light of investigations, explorations, laboratory and field tests, etc. In conclusion, while dependable engineering geological mapping and assessment is considered the backbone, innovative investigations and engineering play crucial role in successful implementation of projects.
Learn more -
$15.00
2020 Papers
Cloud-Based Monitoring of Geotechnical Structures– Case Study: Hinkley Point Nuclear Power Plant
Learn moreMatthias WILD, James STEWART, Chris IRVIN, Sander Van Ameijde
The awareness of safe and sustainable utilisation of all forms of construction such as bridges, tunnels, dams or industrial buildings during its whole lifetime is increasing more and more. The safe operation of our dams is of critical importance to society. As our assets age, the focus on monitoring, control systems and lifespan management is of increasing importance. Communities need to have peace of mind these assets are not going to fail. To prevent failures of structures, a common method is for periodical or situational site visits to check the crucial points of construction. Site visits are cost intensive, subjective and non-continuous. This results in a global research focus on measurement devices and evaluation systems to generate a full structural health monitoring system which guarantees measurement and data evaluation adapted for the specific application over the full lifespan.
For important structures like the Hinkley Point nuclear power plant or Australian Dam structures it’s not just the inspection costs and a sustainably utilisation during service life that are important. The safety during operation of the nuclear power plant is also critical to its operation. To monitor the deep excavation at the power plant DYWIDAG provided geotechnical systems combined with measurement sensors and a monitoring concept for the lifespan of the structure. About 14,000 soil nails and bar anchors are stabilising the excavation. Movements of the retaining wall will lead to a change of stress in the geotechnical tension members. This change is monitored by DYNA-Force Sensors, which are used for load monitoring. This monitoring system has been used successfully in a range of critical structures like stadium roof-beams, staycables, dam-anchors with strands or bars.
A simple installation and read out of sensors is not a major facilitation compared to site visits. The implementation of sensors in a sophisticated monitoring system is the big advantage of structural health monitoring which guarantees a safe and sustainable utilisation of the construction. DYWIDAG is making infrastructure lifespan management smarter and offers a cloud-based online sensor management system (Platform Interactive) which enables processing of large volumes of sensor data and performing complex calculations. It provides real-time alerting, presenting the information in an innovative and interactive way, removing subjective interpretation and providing numerical data online in real time. Platform Interactive with plug and play pre-configured sensors, may also be adapted and applied for a range of SHM projects. It provides continuous reporting and the reassurance structures are performing as they should without the possibility of failure. At DYWIDAG we are making infrastructure lifespan management smarter, safer, stronger
Learn more -
$15.00
2020 Papers
2020 – A novel approach to defect mapping and condition monitoring of large dams using drones and digital engineering
Learn moreZack Wasson
The confluence of several technological innovations including drones, photogrammetry, and thermal imaging has enabled the development of a novel approach to defect mapping and monitoring for large dams. A pilot project trialling the methodology was completed at a rockfill embankment dam with a concrete spillway and is presented as a potential means of improving the accuracy and reliability of condition monitoring. The pilot project included two main objectives: digital inspection and mapping of defects within the concrete spillway; and drone-based photogrammetric survey of the rockfill embankment. Defect mapping of the concrete spillway utilised drone-based photography and Structure from Motion (SfM) photogrammetry to develop a high-fidelity 3D model, from which visual defects could be identified and mapped in a virtual environment. Thermal infrared (IR) imagery of the structure provided an indication of potential shallow subsurface defects in the concrete. Photogrammetric survey of the embankment structure utilised drone-based photography, SfM photogrammetry and a network of precisely surveyed ground control and verification points to develop a georeferenced point cloud, digital elevation model and elevation contours. The results of the project were delivered via a web-based digital twin which included georeferenced results from defect mapping, aerial survey and tools for visualisation, measurement, and reporting.
Learn more -
$15.00
2020 Papers
2020 – Implications of NSW Dams Safety Regulation 2019 on dam safety risk management
Learn moreMark Pearse, John Pisaniello, Sam Banzi, Peter Hill
A completely new dam safety regulation framework was introduced into NSW in November 2019. The new framework addresses all aspects of dam safety management. The implications for dam owners in respect of risk reduction measures (RRMs) that will need to be undertaken have been the matter of debate and are the focus of this paper. The Dams Safety Regulation 2019 requires that dam owners eliminate or reduce the risk posed by their dams but “only so far as is reasonably practicable” (SFAIRP). This is a change from the previous Dams Safety Committee requirement that risks should be reduced as low as reasonably practicable (ALARP). The previous guidance around the extent and timing of risk reduction has been removed and dam owners are now required to determine what is ‘reasonably practicable’. These changes were anticipated to save hundreds of millions of dollars from the reduced cost of risk reduction measures across the state of NSW. These savings appear unlikely to materialise given that dam owners are likely to be highly cognisant of the need to meet the common law expectation that RRMs should be implemented unless the costs associated with the RRMs are grossly disproportionate to the benefits gained. The key changes in the new regulatory framework are identified along with the legal and financial implications in regard to RRMs followed by next steps that should be considered by dam owners in NSW. Many of the implications are applicable to other dam owners who operate under common law (including all states of Australia and New Zealand).
Learn more