2020 – Monte Carlo Geospatial Approach to Liner Design Principles in TSFs
Gideon Steyl, Ralph Holding, Lis Boczek
A Monte Carlo method for assessing liner systems is applied with outcomes demonstrating the range of discharge that could occur over the liner interface. The Monte Carlo approach allows for variation of fill material over the liner system and includes the assessment of a second compacted zone either above or below the liner zone. In this paper clay liners were evaluated due to regulatory guidelines and it could be demonstrated that similar performance to a 1 m clay liner could be attained using compacted material to reduce discharge over the liner interface. The approach applied in this paper allows for at least a worst-case quantification of seepage risk which could be included in liner selection criteria or presenting liner options to regulators.
$15.00
Now showing 1-12 of 14 3380:
Related products
-
$15.00
2020 Papers
2020 – Implications of NSW Dams Safety Regulation 2019 on dam safety risk management
Learn moreMark Pearse, John Pisaniello, Sam Banzi, Peter Hill
A completely new dam safety regulation framework was introduced into NSW in November 2019. The new framework addresses all aspects of dam safety management. The implications for dam owners in respect of risk reduction measures (RRMs) that will need to be undertaken have been the matter of debate and are the focus of this paper. The Dams Safety Regulation 2019 requires that dam owners eliminate or reduce the risk posed by their dams but “only so far as is reasonably practicable” (SFAIRP). This is a change from the previous Dams Safety Committee requirement that risks should be reduced as low as reasonably practicable (ALARP). The previous guidance around the extent and timing of risk reduction has been removed and dam owners are now required to determine what is ‘reasonably practicable’. These changes were anticipated to save hundreds of millions of dollars from the reduced cost of risk reduction measures across the state of NSW. These savings appear unlikely to materialise given that dam owners are likely to be highly cognisant of the need to meet the common law expectation that RRMs should be implemented unless the costs associated with the RRMs are grossly disproportionate to the benefits gained. The key changes in the new regulatory framework are identified along with the legal and financial implications in regard to RRMs followed by next steps that should be considered by dam owners in NSW. Many of the implications are applicable to other dam owners who operate under common law (including all states of Australia and New Zealand).
Learn more -
$15.00
2020 Papers
2020 – Demonstrating risk benefits of improved monitoring and surveillance
Learn moreHench Wang, Peter Hill, Sam Banzi, Muhammad Hameed
Dam owners can often struggle to demonstrate the dam safety risk benefits that can be achieved through non-structural risk reduction measures, such as adoption of smart technological solutions that improve the timeliness and quality of decision making. WaterNSW collaborated with HARC to develop a novel way of demonstrating benefits from improved data management. This paper discusses the use of HEC-LifeSim to demonstrate the reduction in life safety risk from improved monitoring through DamGuard for a case study dam in Sydney. DamGuard is a real-time dam safety monitoring system implemented by WaterNSW. This case study was the first time in Australia where a simulation model such as HEC-LifeSim was applied to quantify the life safety risk benefits pre and post the implementation of DamGuard. The implementation of DamGuard to the sample dam was estimated to reduce the life safety risk by 15%.
Learn more -
$15.00
2020 Papers
2020 – When the bottom-line impacts dam safety: Case studies of commercial realities leading to increased risks
Learn moreJames Thorp, Ryan Singh, Jiri Herza
Responsible management and operation of tailings and water storage facilities comprises a series of activities and projects that must be delivered within the commercial realities of the organisation and operation context of the facility owner. All projects are constrained by several variables, which are commonly represented by the Project Management Triangle of Scope, Time, and Cost. These variables are often finite and mutually exclusive, and delivery of the required outcome is accomplished by successfully managing each variable. The activities (variables) associated with the long-term dam safety are sometimes omitted to meet the immediate project requirements. In addition, the commercial realities, such as a selected project delivery model, can have a significant impact on dam safety risks through the allocation of risk, ability of the key decision makers, and the undue commercial pressures applied by each project delivery model. This paper presents several case studies where the project and commercial realities have led to decision making that impacted dam safety and increased the risk presented by the storage facility. While the immediate impact of these decisions may appear to be minimal, all stages of a tailings or water storage facility’s life span are impacted. This paper presents learnt lessons with the aim to prompt both owners and consultants to reconsider their commercial processes and project delivery strategies and limit unforeseen risks to the safety of tailings or water dams.
Learn more -
$15.00
2020 Papers
2020 – A novel approach to defect mapping and condition monitoring of large dams using drones and digital engineering
Learn moreZack Wasson
The confluence of several technological innovations including drones, photogrammetry, and thermal imaging has enabled the development of a novel approach to defect mapping and monitoring for large dams. A pilot project trialling the methodology was completed at a rockfill embankment dam with a concrete spillway and is presented as a potential means of improving the accuracy and reliability of condition monitoring. The pilot project included two main objectives: digital inspection and mapping of defects within the concrete spillway; and drone-based photogrammetric survey of the rockfill embankment. Defect mapping of the concrete spillway utilised drone-based photography and Structure from Motion (SfM) photogrammetry to develop a high-fidelity 3D model, from which visual defects could be identified and mapped in a virtual environment. Thermal infrared (IR) imagery of the structure provided an indication of potential shallow subsurface defects in the concrete. Photogrammetric survey of the embankment structure utilised drone-based photography, SfM photogrammetry and a network of precisely surveyed ground control and verification points to develop a georeferenced point cloud, digital elevation model and elevation contours. The results of the project were delivered via a web-based digital twin which included georeferenced results from defect mapping, aerial survey and tools for visualisation, measurement, and reporting.
Learn more -
$15.00
2020 Papers
2020 – The Safety Case
Learn moreShane McGrath, Mark Arnold, Josh Rankin, Gavan Hunter
Greenvale Dam is a critical storage for the supply of potable water to Melbourne. The dam had been upgraded through current risk management techniques, and an ALARP assessment completed at that time. However, it was decided that a more comprehensive demonstration of ALARP was warranted to satisfy the dam owner’s duty of care. Since there is no comprehensive guidance in the dams industry for owners and their advisors to reference, the safety case approach used extensively in other hazardous industries was adopted. Considering the approaches used by Victoria’s Worksafe, the Institution of Engineers Australia and the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA), the key components of the safety case for Greenvale dam were identified then developed to provide a logical, structured and comprehensive argument for the safety of Greenvale Dam. This paper provides an overview of components of the safety case developed for Greenvale Dam, the use of safety cases for dams and where process improvements could be made.
Learn more