2020 – Challenges in applying new guidelines to existing tailings dams projects
Michael Ashley, John Phillips
New guidance and publications relating to tailings dams have been released recently by many jurisdictions across the world as an initial response to recent, well-documented, catastrophic tailings dam failures. The application of new guidelines retrospectively to existing tailings projects can introduce complex challenges, especially for sites with a long and often not well documented history. Challenges can be difficult to overcome while balancing time, cost and risk objectives.
This paper explores the impacts of changes between the 2012 and 2019 revisions of the ANCOLD Guidelines on Tailings Dams and potential implications for existing facilities.
The most significant update between the 2012 and 2019 revisions of the guidelines relating to design practices is the additional detail and guidance on seismic stability analyses and static liquefaction. Guidance on the application of new guidelines for tailings dam designers, owners and regulators is required to provide a consistent approach to manage the risk.
$15.00
Related products
-
$15.00
Papers 2020
2020 – The Safety Case
Learn moreShane McGrath, Mark Arnold, Josh Rankin, Gavan Hunter
Greenvale Dam is a critical storage for the supply of potable water to Melbourne. The dam had been upgraded through current risk management techniques, and an ALARP assessment completed at that time. However, it was decided that a more comprehensive demonstration of ALARP was warranted to satisfy the dam owner’s duty of care. Since there is no comprehensive guidance in the dams industry for owners and their advisors to reference, the safety case approach used extensively in other hazardous industries was adopted. Considering the approaches used by Victoria’s Worksafe, the Institution of Engineers Australia and the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA), the key components of the safety case for Greenvale dam were identified then developed to provide a logical, structured and comprehensive argument for the safety of Greenvale Dam. This paper provides an overview of components of the safety case developed for Greenvale Dam, the use of safety cases for dams and where process improvements could be made.
Learn more -
$15.00
Papers 2020
2020 – Dynamic Analyses for Static Liquefaction Factor of Safety and Triggering Threshold Values in Tailings Storage Facilities Constructed by Upstream Method
Learn moreQian Gu, Joshua Chan
Tailings Storage Facilities (TSF) constructed using upstream methods may have static liquefaction risks due to the strain softening behaviour of contractive tailings. Conventional Limit Equilibrium Analyses (LEA) using either peak strength or residual strength fail to address the stress-strain compatibilities between materials at different stages of softening or hardening, resulting in over or underestimating embankment stabilities. Static numerical analyses (Finite Element or Difference) are unable to identify the threshold stability due to their inability to converge close to or beyond equilibrium conditions.
In this study the failure triggering process is modelled with dynamic Finite Element Analyses (FEA) with the stress-softening behaviour of contractive tailings simulated by Norsand Model. The embankment failures are identified by either non-zero residual velocities along downstream face, or a drop in average shear stress along potential failure surfaces under increasing disturbing surface pressure. Threshold disturbing surface pressure estimated using these two methods are in close agreements. Factor of Safety (FoS) values estimated from peak mobilised shear strength are found to be between those estimated using the peak and residual shear strength in LEA. q-p’ stress paths in tailings clearly show the stress ratio increasing towards and beyond instability ratio during undrained triggering process. The developments of zones of shear softening and p’ reduction with increasing undrained disturbances help visualise the failure triggering process.
Learn more -
$15.00
Papers 2020
2020 – A novel approach to defect mapping and condition monitoring of large dams using drones and digital engineering
Learn moreZack Wasson
The confluence of several technological innovations including drones, photogrammetry, and thermal imaging has enabled the development of a novel approach to defect mapping and monitoring for large dams. A pilot project trialling the methodology was completed at a rockfill embankment dam with a concrete spillway and is presented as a potential means of improving the accuracy and reliability of condition monitoring. The pilot project included two main objectives: digital inspection and mapping of defects within the concrete spillway; and drone-based photogrammetric survey of the rockfill embankment. Defect mapping of the concrete spillway utilised drone-based photography and Structure from Motion (SfM) photogrammetry to develop a high-fidelity 3D model, from which visual defects could be identified and mapped in a virtual environment. Thermal infrared (IR) imagery of the structure provided an indication of potential shallow subsurface defects in the concrete. Photogrammetric survey of the embankment structure utilised drone-based photography, SfM photogrammetry and a network of precisely surveyed ground control and verification points to develop a georeferenced point cloud, digital elevation model and elevation contours. The results of the project were delivered via a web-based digital twin which included georeferenced results from defect mapping, aerial survey and tools for visualisation, measurement, and reporting.
Learn more -
$15.00
Papers 2020
2020 – Use of Conditional Mean Spectra with Minimum Magnitude less than 5 in Seismic Hazard Analysis
Learn morePaul Somerville, Andreas Skarlatoudis, Jeff Bayless, Polly Guan
The 2019 ANCOLD seismic guidelines state that “A hazard assessment should be conducted for earthquake magnitudes Mw 5 and above. However, under certain circumstances, smaller magnitude earthquakes may form the lower limit. With masonry dams, slab and buttress dams, older concrete dams, and structural concrete components of dams, Mw 4 earthquake magnitudes should form the lower limit.” However, when using probabilistic Uniform Hazard Spectra (UHS) with Mmin less than 5.0 per the 2019 ANCOLD Guidelines, the hazard will be overestimated unless Conditional Mean Spectra (CMS) are used to represent the ground motions. As described by Somerville et al. (2015), use of the UHS can significantly overestimate the seismic hazard levels presented by individual earthquake scenarios because the UHS envelopes the ground motions from multiple earthquake scenarios in one spectrum. This overestimation is especially true of the ground motions from small magnitude earthquake scenarios. The probabilistic UHS may have large short period ground motions with contributions from a range of scenario earthquakes, but if the UHS is used as the design spectrum, these ground motions will often be represented by earthquake scenarios having inappropriately large magnitudes, long durations, and high long period ground motion levels. As a result, these design ground motions have the potential to overestimate the response of the structure under consideration. By using CMS spectra and time histories, the large probabilistic peak accelerations, predominantly from small earthquakes, are better represented by earthquakes having appropriately small magnitudes, short durations, and lower long period ground motion levels, yielding more realistic estimates of the response of the structure.
Learn more -
$15.00
Papers 2020
2020 – Implications of NSW Dams Safety Regulation 2019 on dam safety risk management
Learn moreMark Pearse, John Pisaniello, Sam Banzi, Peter Hill
A completely new dam safety regulation framework was introduced into NSW in November 2019. The new framework addresses all aspects of dam safety management. The implications for dam owners in respect of risk reduction measures (RRMs) that will need to be undertaken have been the matter of debate and are the focus of this paper. The Dams Safety Regulation 2019 requires that dam owners eliminate or reduce the risk posed by their dams but “only so far as is reasonably practicable” (SFAIRP). This is a change from the previous Dams Safety Committee requirement that risks should be reduced as low as reasonably practicable (ALARP). The previous guidance around the extent and timing of risk reduction has been removed and dam owners are now required to determine what is ‘reasonably practicable’. These changes were anticipated to save hundreds of millions of dollars from the reduced cost of risk reduction measures across the state of NSW. These savings appear unlikely to materialise given that dam owners are likely to be highly cognisant of the need to meet the common law expectation that RRMs should be implemented unless the costs associated with the RRMs are grossly disproportionate to the benefits gained. The key changes in the new regulatory framework are identified along with the legal and financial implications in regard to RRMs followed by next steps that should be considered by dam owners in NSW. Many of the implications are applicable to other dam owners who operate under common law (including all states of Australia and New Zealand).
Learn more