2019 – Estimating the Individual Risk From Dam Failure
Simon Lang, Mark Foster
The ANCOLD (2003) Guidelines on Risk Assessment contain criteria regarding the tolerable level of individual risk from dam failure. Maslin et al. (2012) describe an approach to estimating individual risk from dam failure, using exposure factors, warning and evacuation factors, and fatality factors. These factors vary according to the people at risk, the anticipated warning time, the flood severity and the shelter people are likely to be in. Maslin et al. (2012) provide step-by-step instructions, which means their approach can be applied in a consistent manner from dam to dam. However, the recommended fatality factors are based on Graham (1999) and DHS (2011) definitions of high, medium and low severity flooding which have been superseded by the Reclamation Consequence Estimating Methodology (RCEM). Therefore, in this paper modifications to the Maslin et al. (2012) approach are proposed, so that estimates of individual risk from dam failure are consistent with RCEM-based estimates of societal risk. The paper then concludes with two predictions about how the assessment and use of individual risk in Australian dam safety management may change in future.
$15.00
Related products
-
$15.00
Papers 2019
2019 – Preparing for Climate Change Design, Construction and Operation of Resilient Dams
Learn moreR Amigh
New Zealand’s economy is heavily dependent on export revenues generated by primary industries such as dairy, meat, agriculture, horticulture and viticulture. For these sectors, securing water for irrigation has been a key factor for growth. New Zealand has a temperate climate with generally wet winters and dry summers. The availability of water in the dry summer period is very important for these sectors to maximise production. A considerable amount of investment has already been made in the construction and operation of reservoirs for irrigation purposes. However, because climate change effects (more frequent occurrences of extreme events such as droughts and flash floods) have been observed around the world and the need for restrictions imposed on the use of water resources by regulators for environmental reasons, the need for developing water storage reservoirs has become more essential than ever. Climate change effects are already being factored into current practice. Drawing on the author’s experience, this paper discusses the potential impacts of climate change, with an emphasis on the effects of drought, on the design, construction and operation of water storage facilities with changes necessary to improve the resilience of new dams in
Learn more
response to climate change. The paper also aims at raising awareness among the farming community so they can appreciate the associated risks and issues with climate change and be more cautious about planning and budgeting for their future investments in dam and irrigation projects. -
$15.00
Papers 2019
2019 – Dam Safety Maturity Matrix to Evaluate Health of USACE Dam Safety Program
Learn moreJacob Davis, P.E. , David Blackmore, P.E.
The U.S. Army Corps of Engineers (USACE) has a robust Dam Safety Program (DSP) that utilizes risk- informed decision-making to prioritize its portfolio of dams in need of further study and modifications. USACE also utilizes a two-tiered governance structure in which one body makes portfolio recommendations around risk management while the other body oversees the execution of the agency’s routine DSP and makes policy recommendations. The routine program consists of the activities required for interim risk reduction measures, inspections, instrumentation, monitoring, assessments, operations and maintenance, emergency action planning, training, and other dam safety activities. An internal program management tool exists to monitor and track all these activities and generate metrics around execution of the routine DSP, however, it does not include metrics around other aspects of the DSP like governance, asset management, public safety and security, flow controls, or audits/reviews. USACE hopes to identify gaps in its DSP that can be used to correct shortcomings, continuously improve, and to increase the resilience of its DSP, which will enable each project to deliver benefits to the Nation. The Centre for Energy Advancement through Technological Innovation (CEATI), through its Dam Safety Interest Group (DSIG), collaboratively developed a spreadsheet tool known as the Dam Safety Maturity Matrix (DSMM). The DSMM is a facilitated exercise used to help evaluate how well-developed a program is across 12 elements considered to be typical and important of most dam safety programs. Each of the elements is then deaggregated into sub-elements, each of which can be evaluated by the team. The maturity ranges across 5 levels from Needing Improvement to Leading Edge. After all sub-elements are evaluated, an aggregate maturity level is computed that gives an estimation of the overall maturity level of the program. USACE will present the results of its pilot project using the DSMM and share lessons learned regarding its implementation. The short-term goal is to identify program strengths and areas for improvement, while the long-term goal of USACE using the DSMM is to participate in bench- marking across multiple agencies and international dam owners regarding their dam safety programs, for which has never been done to the knowledge of this author.
Learn more -
$15.00
Papers 2019
2019 – Tailings Dam Guidelines: Adopting International Direction
Learn moreDavid Brett
Recent tailings dam failures have led to worldwide alarm that we are still getting an average of two
significant tailings dam incidents a year. This is despite the efforts of various industry organisations aroundthe world to raise the standards of tailings dam management. Clearly, a significant number of mining dams are not re silient enough to ensure the required level of safety for sustainable mining operations in a modern world in which there is increasing concern for the environment. This paper updates ANCOLD with international developments in attempting to address shortcomings in the mining industry that is allowing these failures to continue to occur.In Australia, ANCOLD have released an addendum to the 2012 ANCOLD Guidelines on Tailings Dams, Planning, Design, Construction, Operation and Closure, to coincide with the new ANCOLD Guidelines for Design of Dams and Appurtenant Structures for Earthquake. This addendum also addresses issues of governance of tailings dams and provides additional guidance on the serious issue of static-liquefaction, a critical factor in recent failures.
On the international scene, ICOLD is progressing a Tailings Dam Safety Bulletin that is hoped will set
minimum standards for Tailings Dams for all member countries. In addition, the International Council of Mining and Metallurgy (ICMM) similarly wants to establish an international standard. It is likely that these international bodies will cooperate to ensure a consistent set of guidelines and that countries will accept and implement these.This paper updates the ANCOLD position regarding guidelines and describes the state of various
Learn more
international guidelines following the June ICOLD meeting in Ottawa. -
$15.00
Papers 2019
2019 – One Breach or More? Assessment of Potential Multiple Flood Overtopping Dam Breaches and Sequencing
Learn moreLindsay Millard, Michel Raymond
Many quantified risk assessments finish the failure mode event tree at the estimated occurrence of an embankment breach leading to dam failure outflows and downstream consequences. In some situations, for dams with multiple embankments with potentially different consequences downstream of each embankment, the possibility for further breaches may be pertinent if there may potentially be higher consequences for a multiple breach scenario. The location of an initial breach and sequence of subsequent breaches could also result in different contributions to total risk.
This paper discusses a method applied to investigate the conditional probability of flood overtopping breaches for multiple earth-fill embankments with grass covered downstream slopes.
For the subject dam, preliminary modelling identified that for a flood overtopping breach of an embankment the breach’s development may not be sufficient to reduce the lake level and sustained overtopping flow over the remaining embankment crests could lead to further embankment breaches.A Monte Carlo dam breach simulation modelling approach was used with a large number of flood events. The simulation modelling considered erosion initiation for a grass slope due to the combination of velocity and duration of flow, and erosion continuing to breach based on duration of flow after erosion initiation. Potential uncertainty of erosion initiation and erosion continuing to breach were represented with probability distributions in the Monte Carlo modelling.
Learn more
The results from the large number of dam breach simulations were then analysed with post processing to derive conditional probabilities for single or multiple breaches and breach sequence. -
$15.00
Papers 2019
2019 – US Army Corps of Engineers Audit of Concrete Chute Spillways on Erodible Foundations
Learn moreMike Phillips, Taylor C. Bradley, Dana W. Moses, Justin T. Pearce, Salvatore A. Todaro, Steven R. Townsley
The purpose of this paper is to document a limited review of the existing concrete chute spillways in the United States Army Corps of Engineers (USACE) portfolio of dams. This internal review was undertaken in response to the partial spillway failure of the Oroville Dam concrete chute spillway in February 2017, the partial spillway failure of the Guajataca Dam concrete chute spillway as a result of Hurricane Maria in September 2017, and to address the request by the United States Congress for USACE, United States Bureau of Reclamation (USBR), and the Federal Energy and Regulatory Commission (FERC) to review their respective portfolios for similar spillway vulnerabilities as Oroville Dam. The intent was to screen for existing concrete chute spillways within the USACE portfolio that may be susceptible to damage/failure during operation.
Learn more