2018 – What Happened at Oroville Dam and Why – Findings of The Spillway Incident Forensic Investigation
John W. France, Irfan A. Alvi, Peter A. Dickson, Henry T. Falvey, Stephen J. Rigbey, John Trojanowski
On February 7, 2017, the gated service spillway (also known as the Flood
Control Outlet or FCO Spillway) at Oroville Dam was being used to release water
to control the Lake Oroville level according to the prescribed operations plan.
During this operation, the service spillway’s concrete chute slab failed, resulting
in the loss of spillway chute slab sections and deep erosion of underlying
foundation materials. Subsequently, as the damaged service spillway was
operated in an attempt to manage multiple risks, the project’s free overflow
emergency spillway was overtopped for the first time since the project was
completed in 1968. Significant erosion and headcutting occurred downstream of
the emergency spillway’s crest structure, leading authorities to evacuate about
188,000 people from downstream communities.
$15.00
Now showing 1-12 of 59 2982:
Related products
-
$15.00
2018 Papers
2018 – The Challenges of Increasing Public Use and Expectations around Dams
Learn moreMartina Cusack
Across Australia, recreation usage around dams is growing rapidly. There is also increasing public expectation around the facilities provided and the activities that can be undertaken.
While dams create many benefits, they also have inherent risks associated with them. The risks associated with public access include public and staff safety, water quality, pollution, environmental degradation, bushfires, water availability, dam & power generation operations, and financial.
In 2016 the Victorian government released “Water for Victoria”, a strategy for managing increasingly valued water resources and a growing population. This strategy recognises the importance of recreational enjoyment of waterways and commits water corporations to continuing to maintain infrastructure and facilities to support recreational objectives at their water storages. Water for Victoria also commits water corporations to consider recreational user objectives in the way water storage and supply is managed. However, this must be within legislative requirements to meet the needs of water entitlement holders and with awareness of the realities of dry conditions and climate change.For the last 10 years, Goulburn Murray Water has been progressively rolling out Land & on Water Management Plans and setting up Land & on Water Implementation Committees. These committees provide a forum for liaison with local government, other statutory authorities, as well as interested environmental, heritage, indigenous, commercial and recreation groups. The groups aim to understand the concerns and requirements of all parties, take appropriate action, which may involve educating communities where some of their desired actions are not achievable.
While this approach has been successful, the growth in social media and the emergence of groups outside of the Land & on Water process has meant that consultation has had to be extended to include self-identifying, special interest groups. This has involved the development of separate groups at Dartmouth and Lake Eppalock to educate and work through the issue at hand, developing appropriate actions, which are accepted and implemented by all parties.This paper will review the Goulburn Murray Water Land & on Water process, and consider two cases studies, namely the “Save Lake Eppalock” community driven campaign and the provision of fishing access on Dartmouth regulating pondage.
Learn more -
$15.00
2018 Papers
2018 – A Robust and Efficient Stochastic Simulation Framework for Estimating Reservoir Stage-Frequency Curves with Uncertainty Bounds
Learn moreC. Haden Smith
The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) developed the Reservoir Frequency Analysis software (RMC-RFA) to facilitate, enhance, and expedite flood hazard assessments within the USACE Dam Safety Program. RMC-RFA is a stochastic flood modeling software that employs advanced statistical and computing techniques, allowing a user to perform a screening-level stage-frequency analysis on a desktop PC with runtimes on the order of seconds to a few minutes. RMC-RFA utilizes an inflow volume-based stochastic simulation framework that treats the seasonal occurrence of the flood event, the antecedent reservoir stage, inflow volume, and the inflow flood hydrograph shape as uncertain variables rather than fixed values. In order to construct uncertainty bounds for reservoir stage-frequency estimates, RMC-RFA employs a two looped, nested Monte Carlo methodology. The natural variability of the reservoir stage is simulated in the inner loop defined as a realization, which comprises many thousands of events, while the knowledge uncertainty in the inflow volume-frequency distribution is simulated in the outer loop, which comprises many realizations.
Stage-frequency curves derived with RMC-RFA are compared to those derived with more complex, precipitation-based simulation frameworks, such as the Monte Carlo Reservoir Analysis Model (MCRAM), the Stochastic Event Flood Model (SEFM), and the Watershed Analysis Tool (HEC-WAT). The inflow volume-based framework employed by RMC-RFA produces stage-frequency curves that strongly agree with the more complex, precipitation-based methods. Furthermore, the results from the alternative methods fall within the RMC-RFA uncertainty bounds, demonstrating its robustness. In this sense, the RMC-RFA simulation framework lends itself to a value of information approach to risk management, where knowledge uncertainty can be efficiently quantified at a screening-level assessment, and then the value of performing more complex and sophisticated studies to reduce uncertainty can be considered.
Learn more -
$15.00
2018 Papers
2018 – Omega-type External Waterstops on a CFRD – An Australian First
Learn morePaul Maisano, Peter Buchanan, Thomas Schmidt
Kangaroo Creek Dam is a concrete face rockfill dam (CFRD) located on the Torrens River, approximately 22 km north east of Adelaide. The dam is currently undergoing a major upgrade to align it with updated safety guidelines set by the Australian National Committee on Large Dams (ANCOLD) to better withstand major flood events or earthquakes. As part of this upgrade, external omega-type waterstops have been installed on the vertical and perimetric joints to mitigate the impact of expected joint deformations due to seismic loading. Two profiles were selected for the external waterstops; one capable of extending 200 mm for the perimetric joint and the outer two vertical joints on each side, and one capable of extending 100 mm for the remaining vertical joints and the horizontal joint between the new face slab and the original face slab. Using the external omega-type waterstops as the second waterstop for the extended perimetric joint simplified construction, particularly with respect to reinforcement details adjacent to joints. It is understood that this is the first time in Australia that an omega-type waterstop is being fitted to a CFRD slab. This paper demonstrates the benefits of retrofitting waterstops to existing dam joints when required, provides general installation details, details for providing a continuous barrier with the existing waterstops by overlapping internal and external waterstops, and lessons learnt from the waterstop installation.
Learn more -
$15.00
2018 Papers
2018 – A Quick Probable Maximum Flood Estimation Method for Queensland
Learn moreSamantha Watt, Michael Hughes & Daniela Sciacca
This paper presents an updated simplified technique for estimation of extreme floods in Queensland. This technique will be of use to practicing hydrologists and engineers working on early phase investigations of dams, weirs, and other infrastructure that requires flood resilience for extreme floods. The equations presented in this paper will provide practitioners with a robust yet simple to apply technique to rapidly estimate peak PMPF and PMF flows (inflows for dams) for Queensland catchments. This will assist feasibility and optioneering of infrastructure without significant cost overheads associated with often complex and time-consuming extreme flood estimates.
Learn more -
$15.00
2018 Papers
2018 – Unusual Combinations of ‘Usual Conditions’- The Possibility of the Improbable!
Learn moreDND Hartford
The notion of probability and its various interpretations brings numerous opportunities for errors and misunderstandings. This is particularly true of contemporary risk analysis for dams that mostly consider geotechnical, hydraulic, and structural capacities subjected to extreme loads considered as independent evets. In these analyses subjective “degree of belief” probability has a major role, both in the modelling of the risk in the system by means of event trees based on inductive reasoning and in the assignment of probabilities to events in the event tree. There are numerous situations where physically possible conditions are eliminated from consideration in a risk analysis on the basis of probabilities that are judged to be too low to be of relevance. This is despite the fact that the assignment of a probability to a condition means that the occurrence of the event or condition is inevitable sometime, with the added complication that the time of occurrence is unknown and unknowable. Although there is no relationship between a remote probability and the possibility (or credibility) of the occurrence of the event in the event tree, it is quite common for physically feasible conditions to be either eliminated or their importance discounted on the basis of low probability in a risk assessment of a dam. Twenty five years ago, this elimination process might have been referred to as “judicious pruning of the event tree”. In more modern parlance, the elimination process is based on consideration of whether or not the condition or sequence of events is clearly so remote a possibility as to be non-credible or not reasonable to postulate. In contrast to the consideration of extreme loads vs. structural or geotechnical capacities, experience has shown that many dam failures and perhaps the majority of dam incidents do not result from extreme geophysical loads, but rather from operational factors. These incidents and failures occur because an unusual combination of reasonably common events occurs, and that unusual combination of events has a bad outcome. For example, a moderately high reservoir inflow occurs, but nowhere near extreme; the sensor and SCADA system fail to provide early warning for some unanticipated reason; one or more spillway gates are unavailable due to maintenance, or an operator makes an error, or there is no operator on site and it takes a long time for one to arrive; and the pool was uncommonly high at the time. This chain of reasonable events, none by itself particularly dangerous, can in combination lead to an incident or even a failure. This leads to the unnerving conclusions that; our estimates of risk made in terms of best available practice using the best available estimates will be underestimates of the actual risk, and the extent to which we underestimate the risk is unknowable. This paper examines why these improbable events occur and what can be done to prevent them. Some implications with respect to the endeavour of risk evaluation are also considered.
Learn more