2018 – Experiences in the Use of TCP/IP Technologies and IP Cameras for Remote Surveillance of Dams
Vicent Espert, Luis Alberto Arguedas
Recent advances in communication technologies have made available an array of new systems and functionalities that dam operators can use to improve automation and centralisation in the daily surveillance tasks of their portfolios. These functionalities include real-time monitoring, target-oriented video surveillance and the remote management of PLCs and data loggers.
The present paper aims to outline some integration possibilities using TCP/IP technologies for remote operations and video surveillance.
The case study features a comprehensive dam instrumentation upgrade, in which the acquisition systems were complemented with a series of IP cameras designed to be triggered by local and remote events.
$15.00
Now showing 1-12 of 59 2982:
Related products
-
$15.00
2018 Papers
2018 – Unusual Combinations of ‘Usual Conditions’- The Possibility of the Improbable!
Learn moreDND Hartford
The notion of probability and its various interpretations brings numerous opportunities for errors and misunderstandings. This is particularly true of contemporary risk analysis for dams that mostly consider geotechnical, hydraulic, and structural capacities subjected to extreme loads considered as independent evets. In these analyses subjective “degree of belief” probability has a major role, both in the modelling of the risk in the system by means of event trees based on inductive reasoning and in the assignment of probabilities to events in the event tree. There are numerous situations where physically possible conditions are eliminated from consideration in a risk analysis on the basis of probabilities that are judged to be too low to be of relevance. This is despite the fact that the assignment of a probability to a condition means that the occurrence of the event or condition is inevitable sometime, with the added complication that the time of occurrence is unknown and unknowable. Although there is no relationship between a remote probability and the possibility (or credibility) of the occurrence of the event in the event tree, it is quite common for physically feasible conditions to be either eliminated or their importance discounted on the basis of low probability in a risk assessment of a dam. Twenty five years ago, this elimination process might have been referred to as “judicious pruning of the event tree”. In more modern parlance, the elimination process is based on consideration of whether or not the condition or sequence of events is clearly so remote a possibility as to be non-credible or not reasonable to postulate. In contrast to the consideration of extreme loads vs. structural or geotechnical capacities, experience has shown that many dam failures and perhaps the majority of dam incidents do not result from extreme geophysical loads, but rather from operational factors. These incidents and failures occur because an unusual combination of reasonably common events occurs, and that unusual combination of events has a bad outcome. For example, a moderately high reservoir inflow occurs, but nowhere near extreme; the sensor and SCADA system fail to provide early warning for some unanticipated reason; one or more spillway gates are unavailable due to maintenance, or an operator makes an error, or there is no operator on site and it takes a long time for one to arrive; and the pool was uncommonly high at the time. This chain of reasonable events, none by itself particularly dangerous, can in combination lead to an incident or even a failure. This leads to the unnerving conclusions that; our estimates of risk made in terms of best available practice using the best available estimates will be underestimates of the actual risk, and the extent to which we underestimate the risk is unknowable. This paper examines why these improbable events occur and what can be done to prevent them. Some implications with respect to the endeavour of risk evaluation are also considered.
Learn more -
$15.00
2018 Papers
2018 – Planning for Exceedance in a Changing World: Incorporating Climate Variability and Uncertainty into a Framework for Dam Design and Management
Learn moreAdam Hosking, Craig Clifton, Kelly Maslin, & Peter von Lany
In the face of potential future climate change, it is important that reservoir asset owners and operators consider what such change could mean for the integrity and operations of their assets. This must be developed as an integral part of risk-based management, with a systematic consideration of the uncertain future implications of climate change and their potential consequences.
Systematic assessment of the consequences of potential climate related events/loads should be included as an integral component of a risk-based approach to dam safety management. The magnitude of potential consequences can be used to inform the prioritisation and management responses to these conditions, regardless of probability of occurrence. Designing to accommodate exceedance events is an important response in this process.
The adaptive management process provides a framework within which the implications of uncertain future conditions and risks can be systematically identified and managed, forming the basis of agreeing a defined ‘pathway’ for monitoring and implementation of management actions. The concept of Adaptation Pathways can be utilised for reservoir adaptation, setting out the long-term risk informed process to manage operations and risks.
Learn more -
$15.00
2018 Papers
2018 – Omega-type External Waterstops on a CFRD – An Australian First
Learn morePaul Maisano, Peter Buchanan, Thomas Schmidt
Kangaroo Creek Dam is a concrete face rockfill dam (CFRD) located on the Torrens River, approximately 22 km north east of Adelaide. The dam is currently undergoing a major upgrade to align it with updated safety guidelines set by the Australian National Committee on Large Dams (ANCOLD) to better withstand major flood events or earthquakes. As part of this upgrade, external omega-type waterstops have been installed on the vertical and perimetric joints to mitigate the impact of expected joint deformations due to seismic loading. Two profiles were selected for the external waterstops; one capable of extending 200 mm for the perimetric joint and the outer two vertical joints on each side, and one capable of extending 100 mm for the remaining vertical joints and the horizontal joint between the new face slab and the original face slab. Using the external omega-type waterstops as the second waterstop for the extended perimetric joint simplified construction, particularly with respect to reinforcement details adjacent to joints. It is understood that this is the first time in Australia that an omega-type waterstop is being fitted to a CFRD slab. This paper demonstrates the benefits of retrofitting waterstops to existing dam joints when required, provides general installation details, details for providing a continuous barrier with the existing waterstops by overlapping internal and external waterstops, and lessons learnt from the waterstop installation.
Learn more -
$15.00
2018 Papers
2018 – Dam Safety Management of Junction and Clover Dams: A Risk Based and Observational Approach
Learn moreSteven O’Brien, Christopher Dann, Timo Mantyvirta
Junction and Clover Dams are central spillway slab-and-buttress dams located in Victoria. Previous safety reviews and assessments of the dams concluded that neither dam met modern dam design standards and remedial works were recommended, including infilling the slab-and-buttress dams with mass concrete to sustain seismic loadings. These conclusions were based largely on the assessed seismic hazard at the site, the results of response spectrum analyses and observed conditions of the dams including alkali-aggregate reaction of the concrete. AECOM used current seismic hazard assessment techniques, conducted concrete investigations and testing, assessed long term surveillance monitoring results and used modern finite element techniques to demonstrate that no upgrade works were required at either dam resulting in a significant saving for AGL.
Learn more -
$15.00
2018 Papers
2018 – The Risk of Pneumatic Fracture Undertaking CPT’s Through Dam Embankment Core
Learn moreDavid Folan
Investigations into the core material of earth fill dams are undertaken reluctantly due to the potential to cause damage to the embankment. Where investigations are required, Cone Penetration Testing (CPT) is increasingly used to assist with the geotechnical assessment of dam embankments. The risk of hydraulic fracture within embankment core material is well known and procedures are typically adopted to minimise the risk of hydraulic fracture during remediation of the holes. Backfilling is typically done in stages allowing for an initial set of the cement/bentonite grout mixture prior to subsequent lifts.
While the risk of hydraulic fracture is well understood, the lesser known risk of pneumatic fracture is a possibility where certain conditions exist. This paper discusses CPT investigations at Fairbairn Dam, operated by Sunwater in Central Queensland, and the challenges faced in undertaking the remediation of the CPT holes. The potential for pneumatic fracture of the embankment core was highlighted during the investigations and details of alternative techniques adopted for reinstatement of the holes are presented. Recommendations are made to appropriately manage the risk of pneumatic fracture when undertaking CPT’s through embankment core.
Learn more