2018 – Ash Tailings Dam Rehabilitation – Challenges and Aspirational Targets
Stafford Griffiths
The rehabilitation of wet tailings storages is likely to become of increasing importance. In a setting of increasing environmental regulation and oversight, the environmental issues inherent in wet tailings storages will increase in visibility. This will translate through to increased regulatory attention, rehabilitation standards and costs. This scenario will necessitate increased engineering ingenuity and approaches to develop cost effective and robust/ defensible outcomes.
This case study of a coal fired power station ash dam rehabilitation compares a conventional (baseline) rehabilitation strategy and the development of a higher land use, with potentially beneficial outcomes for the owner, the community and the environment.
The baseline rehabilitation was a conventional fit-for-purpose rehabilitation approach consistent with the proposed final land use comprising the creation of a stable, open greenspace environment. The higher land use was an aspirational target style rehabilitation, with the assessed highest and best use for the site that was determined to be an industrial land development. While there will be limitations due to the low strength tailings foundation, this higher land use is considered an appropriate stretch target and is a feasible outcome for this site.
$15.00
Related products
-
$15.00
Papers 2018
2018 – Design Development and Construction of Cofferdam within HPP Scheme
Learn moreNikifor Petrovic GHD, Mladen Vuckovic STRABAG
For hydropower dam projects, design and construction of the temporary works including cofferdams are very important. Improper selection, design and/or construction of temporary works may cause delay of major construction works and increase construction cost.
The authors worked on the preparation of the Engineering, procurement and construct EPC tender (based on International Federation of Consulting Engineers (FIDIC) contract-yellow book) for a 20 MW Hydro Power Plant (HPP) project in the Balkans Region. The scheme involved the design and construction of three cofferdams to enable construction of the main dam, intake and powerhouse. The basis for tendering, as a part the contract documents, was the preliminary design of the HPP scheme. The tenderers were allowed to deviate from the solutions presented in the preliminary design as long as the proposed solutions fulfilled the Employer’s Requirements.
As a part of a winning strategy, the preliminary design cofferdams were changed and modified, providing significant saving and facilitating quicker and safer construction. This paper presents the development of the design and challenges faced during construction work.
Learn more -
$15.00
Papers 2018
2018 – The Development and Application of the Guide to Drawdown Capacity for Reservoir Safety and Emergency Planning in the UK
Learn moreA.P. Courtnadge & J.D. Gosden
The paper describes the development of UK guidance on reservoir drawdown capacity. The guidance provides for a consistent thought process to be used in determining the recommended capacity. A basic recommended standard is proposed for embankment dams which varies with the consequences of failure of a dam. The drawdown rate for the highest consequence dams is 5% dam height/day with an upper limit of 1m/day. Engineering judgement is used to vary this standard allowing for ‘other considerations’ including the vulnerability to rapid dam failure, surveillance and precedent practice. A different approach is proposed for concrete/masonry dam, which considers the prime purpose of drawdown being to lower the reservoir in a reasonable timeframe to permit repairs rather than rapid lowering to avert failure. The UK approach is compared with that used in Australia and suggestions made for where its use may be appropriate.
Learn more -
$15.00
Papers 2018
2018 – Unusual Combinations of ‘Usual Conditions’- The Possibility of the Improbable!
Learn moreDND Hartford
The notion of probability and its various interpretations brings numerous opportunities for errors and misunderstandings. This is particularly true of contemporary risk analysis for dams that mostly consider geotechnical, hydraulic, and structural capacities subjected to extreme loads considered as independent evets. In these analyses subjective “degree of belief” probability has a major role, both in the modelling of the risk in the system by means of event trees based on inductive reasoning and in the assignment of probabilities to events in the event tree. There are numerous situations where physically possible conditions are eliminated from consideration in a risk analysis on the basis of probabilities that are judged to be too low to be of relevance. This is despite the fact that the assignment of a probability to a condition means that the occurrence of the event or condition is inevitable sometime, with the added complication that the time of occurrence is unknown and unknowable. Although there is no relationship between a remote probability and the possibility (or credibility) of the occurrence of the event in the event tree, it is quite common for physically feasible conditions to be either eliminated or their importance discounted on the basis of low probability in a risk assessment of a dam. Twenty five years ago, this elimination process might have been referred to as “judicious pruning of the event tree”. In more modern parlance, the elimination process is based on consideration of whether or not the condition or sequence of events is clearly so remote a possibility as to be non-credible or not reasonable to postulate. In contrast to the consideration of extreme loads vs. structural or geotechnical capacities, experience has shown that many dam failures and perhaps the majority of dam incidents do not result from extreme geophysical loads, but rather from operational factors. These incidents and failures occur because an unusual combination of reasonably common events occurs, and that unusual combination of events has a bad outcome. For example, a moderately high reservoir inflow occurs, but nowhere near extreme; the sensor and SCADA system fail to provide early warning for some unanticipated reason; one or more spillway gates are unavailable due to maintenance, or an operator makes an error, or there is no operator on site and it takes a long time for one to arrive; and the pool was uncommonly high at the time. This chain of reasonable events, none by itself particularly dangerous, can in combination lead to an incident or even a failure. This leads to the unnerving conclusions that; our estimates of risk made in terms of best available practice using the best available estimates will be underestimates of the actual risk, and the extent to which we underestimate the risk is unknowable. This paper examines why these improbable events occur and what can be done to prevent them. Some implications with respect to the endeavour of risk evaluation are also considered.
Learn more -
$15.00
Papers 2018
2018 – The Review and Assessment of Scour in the Unlined Spillway Channel at Burdekin Falls Dam
Learn moreDavid Ryan, Steven Pells
In 2015, a study was undertaken where recommendations were made to provide protection to the exposed rock in the unlined channel of the spillway at Burdekin Falls Dam. The protection included a matrix of anchor bars which extended the full 504 m width of the spillway and 25 m in the downstream direction. Over 1,200 anchors were proposed comprising 36 mm diameter bar extending up to 15 m into the foundation.
A value engineering study was undertaken in 2017 where a review of the rock scour potential was undertaken. The study was based on a methodology developed by Pells (2016) as part of a research grant funded under an Australian Research Council (ARC) Linkage Project which was jointly financed by the Federal Government of Australia, various state government bodies and engineering consultancies involved in dam design, operations and management.
This paper describes the approach taken as part of the value engineering study, the methods used in the assessment and the benefits of both innovative thinking and challenging the more traditional approach of rock scour assessment, the outcome of which resulted in a $11 m plus saving to the owner of the asset.
Learn more -
$15.00
Papers 2018
2018 – Evaluating potentially active tectonic faults for probabilistic seismic hazard assessments in Australia
Learn moreDee Ninis, Elodie Borleis & Wayne Peck
For intraplate regions such as Australia, identifying and quantifying activity on tectonic faults for inclusion in probabilistic seismic hazard assessments can be challenging due to the typically long return period for ground-rupturing earthquakes associated with these structures. Return periods of 10,000’s to 1,000,000’s of years mean that surface displacement evidence is prone to degradation through erosion and burial, and paleoseismological ‘trench’ excavations may not uncover geology old enough to reveal previous events. As a consequence, there is often little or no preserved evidence of past ground rupturing events on these structures. Rather than ignoring faults which show no evidence of neotectonic displacement, we present an alternative approach; in addition to considering active faults (movement in the last 35,000 years) and neotectonic faults (movement in the last 10 Myr) in seismic hazard assessments, we also consider faults which otherwise show no evidence of neotectonic activity but which are aligned favourably with the current stress regime and are therefore potential sources of earthquakes and accompanying strong ground motion.
Learn more