2017 – Underwater Rehabilitation of Dams with Geomembranes
Alberto Scuero, Gabriella Vaschetti, John Cowland
Waterproofing geomembranes have been used for new construction and rehabilitation of dams since 1959. Research for underwater rehabilitation with geomembranes started at the beginning of the 1990s. The first installation was made in 1997 at Lost Creek arch dam in USA, where a SIBELON PVC geomembrane system was installed partly underwater, to restore watertightness to the upstream face. Techniques for underwater cracks/joints repair, and for staged repair, were developed and first adopted in 2002 and 2010 respectively. The paper presents through some significant case histories the range of underwater applications available today. The paper also presents a new underwater technology, the Sibelonmat®mattress, that allows water-tightening canals without reducing water flow.The Sibelonmat®can be used in embankment dams, to waterproof the upstream. face or as upstream blanket
$15.00
Now showing 1-12 of 47 2981:
Related products
-
$15.00
2017 Papers
2017 – Construction Flood Risk Strategies for Dam Upgrades
Learn moreColleen Baker, Sean Ladiges, Peter Buchanan, James Willey, Malcolm Barker
Dam Owners and Designers are often posed with the question “what is an acceptable flood risk to adopt during the construction of dam upgrade works?” Both the current ANCOLD Guidelines on Acceptable Flood Capacity (2000) and the draft Guidelines on Acceptable Flood Capacity (2016) provide guidance on the acceptability of flood risk during the construction phase. The overarching principle in both the current and draft documents is that the dam safety risk should be no greater than prior to the works, unless it can be shown that this cannot reasonably be achieved.Typically with dam upgrade projects it is not feasible to take reservoirs off-line during upgrade works, with commercial and societal considerations taking precedent. It is therefore often necessary to operate the reservoir at normal levels or with only limited drawdown. The implementation of measures to maintain the risk at or below that of the pre-upgraded dam can have significant financial and program impacts on projects, such as through the construction of elaborate cofferdam arrangements and/or staging of works. This is particularly the case where upgrade works involve modifications to the dam’s spillway.The use of risk assessment has provided a reasonable basis for evaluating the existing and incremental risks associated with the works, such as the requirement for implementation of critical construction works during periods where floods are less likely, in order to justify the As Low As Reasonably Practicable (ALARP) position. This paper explores the ANCOLD guidelines addressing flood risk, and compares against international practice. The paper also presents a number of case studies of construction flood risk mitigation adopted for dam upgrades on some of Australia’s High and Extreme consequence dams, as well as international examples. The case studies demonstrate a range of construction approaches which enable compliance with the ANCOLD Acceptable Flood Capacity guidelines
Learn more -
$15.00
2017 Papers
2017 – Tailing Dams – How Do We Make Them Safer?
Learn moreDr Andy Hughes
Tailings dams continue to undergo failures at an unacceptable rate compared to water storage dams, including failures at operations owned by high profile mining companies.Tailings dams have often a different form and method of construction than water storage dams in that tailings dams continue to be raised over time as part of the mine operations and rise to considerable heights. These failures are often the result of a combination of design, construction and operations actions that are controlled by humans and must be better coordinated and managed in the future. The consequence of failure can be widespread flows of tailings and water over the landscape and water courses. This can have extreme consequences in terms of life loss, environmental damage, social license to operate, company value, and mining industry sustainability. Therefore,it is necessary that the mining industry strive for zero failures of tailings facilities. Any additional technology and information that enables an owner of a tailings dam to be more certain of its condition and thereby reduce the risk of failure is of tremendous value to reliable tailings and mine water management.The Willowstick method uses low voltage, low amperage, and alternating electrical current to directly energise the groundwater by way of electrodes placed in wells or in contact with seepage or leaks. This approach has been successfully used to identify water flow paths through, under and around tailings dam in plan and elevation.The Willowstick technology provides additional information to supplement the geological, geotechnical and hydrological, evaluations analyses and designs, and to further improve tailings dam safety by more robust designs if necessary. This paper, using several tailings dam case studies, illustrates the procedure, findings, and the benefits of the Willowstick methodology. The findings of many Willowstick surveys range from tailings dams where the methodology has confirmed the design evaluations, to tailings dams where new groundwater and leakage flow paths were identified. In the latter case, the dam designers were able to update the designs, based on the new information,to mitigate the identified risks and to improve the overall safety of the tailings dams in accordance with the goal of zero failure.
Learn more -
$15.00
2017 Papers
2017 – Can They Jump Puddles? A Discussion of the Design Features of a Weir to Limit Impacts on Aquatic Species
Learn moreLesa Delaere, Dr Natalie Clark, Dr Shayan Maleki
Waterway barriers, such as dams and weirs, have the potential to impact aquatic fauna species through the restriction of fauna movement and direct injury and mortality of individuals. Without suitably designed aquatic fauna passages and features to minimise injury and mortality, these barriers may adversely affect the viability of local and regional populations, through disruption to critical behaviours (e.g. breeding, dispersal).
The Lower Fitzroy River Infrastructure Project comprises of two weirs on the Fitzroy River in central Queensland. Two threatened turtle species, the Fitzroy River turtle and the white-throated snapping turtle, and a range of fish species needed consideration of species-specific requirements and development of targeted design solutions.
This paper discusses the ecological needs of these species as well as features incorporated into the design to reduce the impact of the weirs. The design incorporated modular fishlocks, gate, spillway and stilling basin features, an innovative turtle passage, special considerations for outlets and operational aspects. The design was further subject to complexity due to the variation in river flows, zero flow to approximately 9,000m3/sat bank full, and needed to account for a wide range of operational scenarios with respect to the species impacts.The paper also includes a discussion on computational fluid dynamics modelling (CFD) which was used to validate the design of fish passage structures.
Learn more -
$15.00
2017 Papers
2017 – Factor of Safety? – Do we use it correctly?
Learn moreJiri Herza, Michael Ashley, James Thorp
The principle of minimum acceptable factors of safety has been used to assess the stability of embankment dams for decades. The commonly applied minimum acceptable factors of safety remain very similar to those recommended in the early 1970’s, despite the development of new design tools and better understanding of material behaviour. The purpose of factors of safety is to ensure reliability of the dam design and to account for uncertainties and variability of dam and foundation material parameters, uncertainties of design loads and limitations of the analysis method used. The impact of uncertainties and reliability of input values into stability analyses was recognised many decades ago, and the factor of safety was recommended depending on the loading conditions and the consequences of failure or unacceptable performance. Interestingly, the minimum recommended factors of safety used today do not take into account the potential consequences of dam failure or the uncertainties in input values, and are based on the loading conditions only. Yet, several authors have demonstrated that a higher factor of safety does not necessarily result in a lower probability of failure, as the analysis also depends on the quality of investigations, testing, design and construction. This paper summarises the history of the factor of safety principle in dam engineering, discusses the calculation of the factor of safety using commonly used analytical tools, demonstrates the impact of uncertainties using a case study and provides recommendations for potential improvements.
Learn more -
$15.00
2017 Papers
2017 – Lessons Learned and the impacts of Cyclones Debbie and Marcia on Queensland’s Emergency Planning and Guidelines
Learn morePeter Allen and Mark Rhimes
Recent tropical cyclones have had significant impacts on coastal Queensland and produced significant inflows into a large number of major dams with the triggering of a number of Emergency Action Plans for downstream release hazards. While there were several floods of record, there were no significant dam safety incidents. The dams seemed to have been blamed for a lot of this flooding even though they provided significant flood mitigation. This paper will cover the emergency responses to these events, the public perceptions and the associated third party reviews of these events. Community expectations and the ability to undertake post flood event assessments of dam operations is also driving such investigations.This paper will also discuss the consequential updates being made to Queensland Emergency Action Planning Guidelines to encourage effective engagement with local emergency planners and other stakeholders in the development of these guidelines.
Learn more