2017 -Tenterfield Creek Dam Upgrade, Post-tensioning or Mass Concrete Buttress? Let the Market Decide
David Guest, George Samios, Richard Rodd
Tenterfield Creek Dam is a 15m high concrete gravity structure that was constructed in 1930 and raised by 1.83m and stabilised using 97 post-tensioned ground anchors in 1974.Recent stability assessments concluded that the dam does not satisfy the ANCOLD Guidelines for Stability of Gravity Dams and that the situation is likely to deteriorate given the questionable performance of the post-tensioning cables and on the grounds of continuing corrosion and demonstrated loss of load.Tenterfield Shire Council is committed to improving the stability of the dam to meet the requirements of the NSW Dam sSafety Committee and engaged Public Works Advisory to assist them achieve this outcome.
Public Works Advisory prepared a dam upgrade options study which selected two options for further consideration. The estimated costs of the two preferred options were found to be potentially close;therefore Tenterfield Shire Council requested that both options be taken to detail design and tender stage to allow the market to indicate which option was in-fact better value.Factors other than construction costs were also considered in the options evaluation process and these factors influenced the selection outcome. The two upgrade options of lowest cost were the conventional gravity dam strengthen solutions i.e. installation of new post-tensioned ground anchors and downstream mass concrete buttressing. The decision to proceed to tender with two options was supported by the other key funding stakeholder, DPI Water.
This paper provides some unique insight on the comparison of conventional upgrade options for concrete gravity dams and also examines some interesting design aspects encounter edduring the design development process
$15.00
Now showing 1-12 of 47 2981:
Related products
-
$15.00
2017 Papers
2017 – The Design Flood Frequencies for My Dam Have Changed – Why?
Learn moreMark Pearse, Peter Hill
Risk assessments for large dams and the design of upgrades are often dependent on estimates of peak inflows and outflows well beyond those observed in the historic record. The flood frequencies are therefore simulated using rainfall-runoff models and design rainfalls. The recent update of Australian Rainfall and Runoff (ARR) has revised the design rainfalls used to model floods that are of interest to dam owners. This will change the best estimate of flood frequencies for some dams. However, for most dams the impact of revised design rainfalls on flood frequencies is small compared to other factors that can change (independent of dam upgrades). These include model re-calibrations to larger floods, changes to operating procedures that affect the drawdown distribution and improvements in how the joint probabilities of flood causing factors are simulated. In this paper, we look at how the design flood frequencies for some of Australia’s large dams have changed, the reasons for this and then identify five key questions for dam owners to ask to aid assessment of whether the hydrology for a dam should be reviewed
Learn more -
2017 Papers
2017 – Certainty in Uncertainty: Navigating Environmental Impact Assessment Regulatory Processes
Learn moreGeraldine Squires
There is increased pressure from stakeholders for projects to include evaluation of emerging broader development issues within the environmental assessment process. These emerging issues are not well documented or understood and at the forefront of untested preliminary government policy positions.
Agencies expect proponents to invest in evaluating these matters outside of typical assessment practices. Requests are made late in the evaluation and approval process.Assessmen involves matters not directly related to the project or within the proponent’s control and occurs late in the project development cycle.
The Lower Fitzroy River Infrastructure Project (LFRIP) was identified through the Central Queensland Regional Water Supply Study in 2006, as a solution to secure future water supplies for the Rockhampton, Capricorn Coast and Gladstone regions. The Gladstone Area Water Board and SunWater Limited, as proponents, propose to raise the existing Eden Bann Weir and construct a new weir at Rookwood on the Fitzroy River in Central Queensland.
The LFRIP environmental impact statement (EIS) was approved, subject to conditions, by the Queensland Coordinator-General in December 2016 and the Commonwealth Minister for the Environment and Energy in February 2017. Achieving conditions that will realise positive environmental outcomes while simultaneously achieving project objectives, particularly with regard to timeframes and costs, was not without its challenges.
The EIS was developed in accordance with the requirements of the State Development Public Works Organisation Act 1971 (Qld) and the Commonwealth’s Environment Protection and Biodiversity Conservation Act 1999, including an extensive stakeholder consultation programme. These regulatory requirements are well understood and applied to projects as normal accepted practice. They ensured that potential project impacts and benefits were identified, that appropriate levels of effort were applied to investigations to establish baseline conditions and that risks to and impacts on environmental (including social and cultural) matters were adequately mitigated and managed.
The environment is not static. Emerging issues and perceptions results in regulation and policy changes in response to political and social drivers. During the development of the EIS both new legislation and new policies were imposed on the project.New legislation resulted in additional assessment around matters previously considered mitigated and managed (fish passage). New legislation introduced new matters for assessment (connectivity). Collaboration and engagement with stakeholders were key to understanding the applicability of these elements to the project and for developing an approach to address the legislative requirements late in the project’s development and assessment process.
In Queensland,policy is emerging to mitigate and manage impacts of development on the Great Barrier Reef World Heritage Area’s universal values. The EIS was required to address the direct project impacts on water quality and the impacts arising because of the LFRIP (facilitated development). Water secured by the LFRIP is for urban, industrial and agricultural purposes. Urban and industrial developments are well regulated and subject to specific environmental approvals processes. Use of water for agricultural purposes, intensive irrigated agriculture in particular,is less regulated. Policies developed are reactive and require individual projects to address these impacts.In the absence of regulatory guidelines for assessment of consequential impacts, the project adopted a collaborative approach. The proponents established a working group, including State and Commonwealth technical agencies. This allowed for robust and scientifically defendable methodologies to be developed and agreed upfront. Streamlining the approach by including key decision makers assisted in managing expectations and focused the assessment on realistic and achievable outcomes relative to the project. The result was defendable outcomes allowing timely decision making and avoided rework as much as possible.
This paper describes developments in environmental assessment relating to new and augmented weirs.
Learn more -
$15.00
2017 Papers
2017 – Variability between Rainfall Runoff Methods and Observed Floods: Implications for Risk, Design, Dam Operation and Communities in Australia
Learn moreJames Stuart, Michael Hughes
Several recent rain events in Australia have resulted in impoundment flood levels where there was a surprising variability between the Annual Exceedance Probability (AEP) of the flood level and that of the rainfall. The issue was highlighted during the Queensland Flood Commission of Inquiry (QFCI, 2011) by the Queensland Dam Safety Regulator who suggested there may be a problem with design hydrology after a dam safety event that saw impoundment levels of around 1:9000 AEP with a 1:200 AEP catchment rainfall at North Pine Dam, north of Brisbane in 2011. Wide disparities have occurred at Wivenhoe Dam west of Brisbane, at Callide Dam, west of Gladstone and at other locations.
This paper examines the Generalised Short Duration Method (GSDM) (BoM, 2003) and the Revised Generalised Tropical Storm Method (GTSMR) (BoM, 2003) typically used for dam flood capacity assessments in an attempt to explain the variability outlined above and whether it is, in part, exacerbated by the methods themselves.
It finds that processes of generalising rainfall depth, intensity, temporal and spatial characteristics are working together with adopted hydrological methods to contribute to such variability, that in the worst case could lead to PMF levels in dams with much less rainfall than the associated PMP would infer.
Moreover, two key assumptions; that of AEP neutrality (AEP of rainfall is equal to that of the flood) and frequency of PMP based on catchment area, which are the foundations stones of our understanding of flood frequency for large structures, are found to be untested or simply interim advice. This leads to the conclusion that the likelihood of floods in the range 2000 year AEP to PMF may continue to show surprising variability, potentially of an order of magnitude or more, compared to the rainfall AEP.
There is a need for a review of these methods and potentially provision of interim guidance as these methods are currently being used in dam upgrade programs throughout Australia and are also the basis for emergency planning. The identification of these issues concerns current methods and are independent to any discussion on climate change.Prior to commencing, it is worth defining two terms that re-occur throughout the document:
Annual Exceedance Probability (AEP): The probability that a given rainfall total accumulated over a given duration will be exceeded in any one year. AEP Neutrality is the theory that assumes the probability of the rainfall can be transferred to the resulting flood.Average Variability Method (AVM): Technique for estimating design temporal pattern of average variability to ensure AEP Neutrality in transition from PMP to PMP design flood
Learn more -
$15.00
2017 Papers
2017 – A Unique Experience with Liquefaction Assessment of Impounded Brown Coal Ash
Learn moreRadin Espandar, Mark Locke and James Faithful
Brown coal ash has the potential to be a hazard to the environment and local communities if its storage is not well managed. The risk of releasing contained ash from an ash tailings dam due to earthquake induced liquefaction is a concern for mining lease holders, mining regulators and the community.Ash tailings dams are typically raised by excavating and compacting reclaimed ash to form new embankments over slurry deposited ash, relying on drying consolidation and minor cementation for stability. Understanding the post-earthquake behaviour of the brown coal ash is necessary to assess the overall stability of an ash tailings dam during and after seismic loading events.A particular concern is the seismic motion may break cementation bonds within the ash resulting in a large reduction in shear strength (i.e. sensitive soil behaviour) and potential instability. There is limited information available for black coal ash however, brown coal ash has different properties to black coal ash and no known work has been carried out to date in this area.The dynamic and post-earthquake behaviour, including liquefaction susceptibility, of the brown coal ash was studied, specifically for Hazelwood Ash Pond No. 4 Raise (HAP4A) in Latrobe Valley, Victoria. In this study, different well-known methods for liquefaction susceptibility, including the methods based on the index parameters, the cone penetration test (CPT) and the cyclic triaxial testing, were used and the results were compared.It was found that the impounded brown coal ash is susceptible to liquefaction and /or cyclic softening. Triggering of the liquefaction or softening was assessed based on the results of cyclic triaxial test.In this methodology, the relationship among axial strain(εa), Cyclic Stress Ratio (CSR) and number of uniform cycles (Nequ) was determined based on the triaxial test results. Then, asite-specific CSR was determined using the ground response analysis. The CSR and number of uniform cycles (Nequ) for each ash layer was calculated and added to the εa-CSR-Nequgraph to determine the expected axial strain during an MCE event. It was found that the calculated axial strain for the ash embankment and ash deposits during site specific Maximum Credible Earthquake (MCE) are less than the axial strain of the ash material required for triggering of liquefaction and the brown coal ash in HAP4A does not liquefy and/or soften the material during an MCE event. Also it was found that the insitu tests which break the cementation between particles(such as CPT)does not provide accurate results on triggering or sensitivity.
Learn more -
$15.00
2017 Papers
2017 – Haldon Dam Remediation: A Case Study of Earthquake Damage and Restoration
Learn moreJohn Harris, James Robinson, Ron Fleming
Haldon Dam Remediation: A Case Study of Earthquake Damage and RestorationJohn Harris, James Robinson, Ron FlemingAECOM New Zealand LimitedAECOM New Zealand Limited, Fleming Project Services Limited Haldon Dam is a 15m high zoned earth-fill embankment irrigation dam, located approximately 10 km south-west of Seddon, in the Awatere Valley, New Zealand. The crest and upstream shoulder of the embankment suffered serious damage during the 2013 Cook Strait earthquakes, and the Regulator enforced emergency lowering of the reservoir by 5.5m to reduce the risk of flooding to Seddon Township from a potential dam failure. AECOM was engaged by the owner to carry out a forensic analysis of the damaged dam and subsequently the design of the 2-Stage remedial works. The remedial works addressed the existing dam deficiencies and earthquake damage in order to restore the dam to full operational capacity and gain code compliance certification. Key features oft he approach included holding a design workshop with the owner prior to undertaking detailed design, careful rationalisation of the upstream shoulder to optimise the competing interests of strength and permeability, contractor and regulator involvement in the design and construction process, and balancing risk and constructability with the chimney filter retrofit. This paper presents a description of, and approach to, remedial works solution undertaken to remediate a substandard and earthquake-damaged dam to fully operational status in an area of high seismicity. Applying this approach, the objective of achieving a robust, safe, economical design that was acceptable to the regulators and the owner was achieved.
Learn more