2017 – Operation and Implementation of a Web-based Dam Monitoring Platform
Stefan Hoppe, Vicent J. Espert-Canet
Monitoring data has to be transformed into useful knowledge to provide owners and operators with valuable information about the safety status of their dams. This information should be up-to-date and easily accessible for all technicians and engineers involved inthe safety program,and directly linked to operation and emergency preparedness procedures.This article describes the main functions of a web-based software for the acquisition, processing,and evaluation of monitoring data. It runs on conventional internet browsers,and does not require the installation of any additional software. It provides appropriate tools for monitoring the safety status of dams and analysing dam behaviour.This article uses a case study to outline the experience gained from implementing and operating the software for 8 years to control more than 50 Spanish public dams owned by a river basin authority. The implementation involved completely revisingthe installed monitoring systems and recompiling all available information. This was used as a basis for an updated,goal-oriented definition of necessary variables, configuration of charts, SCADA views and threshold values. A key aspect of the software ́s successful implementation was the theoretical and practical training of all stakeholders.As a result of the software ́s implementation, the dam owner was able to use the data from their monitoring system more efficiently. The development of safety reviews and dam safety status evaluations were also considerably improved.
$15.00
Related products
-
$15.00
Papers 2017
2017 – Tailoring Consequence Assessments for Retarding Basins
Learn moreAndrew Northfield, Simon Lang, Peter Hill
Melbourne Water currently manages more than230retarding basins (RBs). A large portion of these are less than 4 metres high, and traditionally structures of this size have not been subject to intermediate or detailed ANCOLD Consequence Assessments. However, the need to understand the failure consequences for smaller structures has increased over time, as risk based approaches to managing safety have expanded from large dams to other water retaining assets.
Undertaking detailed consequence assessments for all Melbourne Water’s RBs would not be practical, given the costs and time involved. Therefore, this paper describes a method for assessing the level of ANCOLD Consequence Assessment that is justified, based on the structure’s attributes. It also presents an equation that was used to estimate peak outflows from RB failure. The peak outflow estimates can be used to model approximate failure inundation extents downstream of small dams and RBs.
The paper draws on work that HARC have recently undertaken for Melbourne Water to assess the failure consequences for 88 RBs. The outcomes are relevant to other organisations that own or manage significant numbers of small water dams or RBs.
Learn more -
$15.00
Papers 2017
2017 – Factor of Safety? – Do we use it correctly?
Learn moreJiri Herza, Michael Ashley, James Thorp
The principle of minimum acceptable factors of safety has been used to assess the stability of embankment dams for decades. The commonly applied minimum acceptable factors of safety remain very similar to those recommended in the early 1970’s, despite the development of new design tools and better understanding of material behaviour. The purpose of factors of safety is to ensure reliability of the dam design and to account for uncertainties and variability of dam and foundation material parameters, uncertainties of design loads and limitations of the analysis method used. The impact of uncertainties and reliability of input values into stability analyses was recognised many decades ago, and the factor of safety was recommended depending on the loading conditions and the consequences of failure or unacceptable performance. Interestingly, the minimum recommended factors of safety used today do not take into account the potential consequences of dam failure or the uncertainties in input values, and are based on the loading conditions only. Yet, several authors have demonstrated that a higher factor of safety does not necessarily result in a lower probability of failure, as the analysis also depends on the quality of investigations, testing, design and construction. This paper summarises the history of the factor of safety principle in dam engineering, discusses the calculation of the factor of safety using commonly used analytical tools, demonstrates the impact of uncertainties using a case study and provides recommendations for potential improvements.
Learn more -
$15.00
Papers 2017
2017 – Understanding Victorian Local Government Authority Dams and Retarding Basins
Learn moreMonique Eggenhuizen, Peter Buchanan, Reena Ram, Tusitha Karunaratne
The Department of Environment, Land, Water and Planning (DELWP) has a regulatory role for the safety of dams under the Water Act 1989 (Act) and is the control agency for dam related emergencies. Local Government in Victoria is divided up between 79 LocalGovernment Authorities (LGAs), each responsible for administering local infrastructure and community services such as roads, drainage, parks etc. Current records indicate that 42 of the 79 LGAs own or manage up to 435 dams and retarding basins.Many of these assets, which include a mix of old water supply dams, ornamental lakes and retarding basins, have been accumulated by LGAs over many years as a result of asset transfers and conversions, land development projects, flood mitigation programs and opportunistic acquisitions by the transfer of land. DELWP engaged GHD to assist and provide advice to the LGAs to significantly improve and update knowledge on LGA dams and retarding basins. The objective of this project is to ascertain where the State’s LGA dams and retarding basins are located, what risks they might pose to communities and infrastructure, what to consider during emergency management planning and response, and to provide owners with the essential management tools and procedures to effectively manage these assets, if these are not in place already.The outcome of this project was to support LGAs to improve management of their dams and retarding basins. It aimed to do this by assisting LGAs with the development of basic dam safety programs that will enable LGAs to more effectively manage their portfolios of dams and retarding basins in terms of ongoing maintenance, dam surveillance and emergency planning and response, and demonstrate due care.This project had a number of key challenges. These included the requirement to process and assess a large number of sites within a small timeframe whilst achieving good value for money,without compromising DELWP’s objectives. A number of efficient methods were adopted during this project particularly during the initial data gathering process, identifying those dams which needed to be inspected based on embankment heights, reservoir capacity and consequences, rapid preliminary assessment of consequences, the development of effective templates for the site inspections, and a method of applying qualitative risk assessments, applicable to the majority of the dams, allowing a consistent assessment of the status of each dam and damsafety documentation.The methods discussed(although developed specifically for the Victorian LGA dams portfolio)provide a sound basis for a screening tool to assess a large number of smaller dams in an efficient manner and quickly identify higher consequence category dams requiring attention. This method could easily be modified and adapted to be applied to similar portfolios of dams.
Learn more -
$15.00
Papers 2017
2017 – Tullaroop Dam: Ongoing Cracking and Unusual Pore Water Pressure Response in a 60 Year Old Earth Embankment
Learn moreGavan Hunter, David Jeffery and Stephen Chia
The Main Embankment at Tullaroop Dam in central Victoria is a 43 m high earthfill embankment with a very broad earthfill zone and rockfill zones at the outer toe regions. There has been an extensive history of cracking within the Main Embankment since formalisation of visual inspections in 1987.Widespread cracking has been observed on the crest and downstream shoulder. Cracking on the crest has mainly been longitudinal, but transverse cracks have also been observed. Cracking on the downstream shoulder has comprised longitudinal, diagonal and transverse cracking. In April 2004, a 60 mm wide diagonal crack opened on the downstream shoulder of the left abutment (from crest to toe) and Goulburn-Murray Water constructed a local filter buttress in 2005/06 on the left abutment. In 2011/12 a longitudinal crack opened up on the upper downstream berm toward the right abutment. The crack was initially 15m long and 10 to 215 mm wide, then propagated several months later to 70 m in length, 40 to 50 mm width and greater than 3 m in depth.In May 2011 three piezometers within the earth fill core recorded a very rapid rise in pore water pressure equivalent to 12 to 13 m pressure head above their previous readings. The piezometers were located on the same alignment (upstream to downstream) and were located below the crest and downstream shoulder, and the rise was to levels close to and above the embankment surface. The piezometers then showed a steady fall with time returning to the pre rise levels after 4 to 6 weeks.In 2015/16 Goulburn-Murray Water undertook dam safety upgrade works to reduce the risk of piping through the Main Embankment by extension of the filter buttress across the full width of the embankment. During these upgrade works, very deep (greater than 5 m) and extensive transverse cracks were observed in the embankment over relatively subtle slope changes on the right abutment.Thecracking and pore water pressure behaviour in the Main Embankment at Tullaroop Reservoir present an important case study. The paper provides details on the cracking and postulated crack mechanisms, and the rapid pore water pressure rise and postulated mechanisms. A summary of the upgrade works is also provided.
Learn more -
$15.00
Papers 2017
2017 – Haldon Dam Remediation: A Case Study of Earthquake Damage and Restoration
Learn moreJohn Harris, James Robinson, Ron Fleming
Haldon Dam Remediation: A Case Study of Earthquake Damage and RestorationJohn Harris, James Robinson, Ron FlemingAECOM New Zealand LimitedAECOM New Zealand Limited, Fleming Project Services Limited Haldon Dam is a 15m high zoned earth-fill embankment irrigation dam, located approximately 10 km south-west of Seddon, in the Awatere Valley, New Zealand. The crest and upstream shoulder of the embankment suffered serious damage during the 2013 Cook Strait earthquakes, and the Regulator enforced emergency lowering of the reservoir by 5.5m to reduce the risk of flooding to Seddon Township from a potential dam failure. AECOM was engaged by the owner to carry out a forensic analysis of the damaged dam and subsequently the design of the 2-Stage remedial works. The remedial works addressed the existing dam deficiencies and earthquake damage in order to restore the dam to full operational capacity and gain code compliance certification. Key features oft he approach included holding a design workshop with the owner prior to undertaking detailed design, careful rationalisation of the upstream shoulder to optimise the competing interests of strength and permeability, contractor and regulator involvement in the design and construction process, and balancing risk and constructability with the chimney filter retrofit. This paper presents a description of, and approach to, remedial works solution undertaken to remediate a substandard and earthquake-damaged dam to fully operational status in an area of high seismicity. Applying this approach, the objective of achieving a robust, safe, economical design that was acceptable to the regulators and the owner was achieved.
Learn more