2017 – Breach Development Relationships for Small Earthen Dams
Elaine Pang, Robert Fowden
There are numerous established methods available for assessing the consequences of failure for earthen water dams.The estimation of breach dimensions and failure times remains the greatest common area of uncertainty, particularly for dams under 10m in height, where the number of historic records behind the established methods reduces considerably.Also, various factors can have a significant impact on the strength of small dam embankments, potentially contributing to the likelihood of failure.Consequently, failure impact assessments for smaller dams may rely more heavily on the engineering judgement of the responsible engineer. Although the consequences of failure may indeed be lower for smaller dams, the large number of unknown or unregulated dams in some locations means that it can be difficult to quantify their overall contribution in terms of dam safety risk. This paper presents an on-going project to compile and analyse observed small earthen dam failures with the intent of refining existing statistical breach relationships for smaller dams.Context is provided through an overview of DEWS’ investigative program, including the presentation of several case studies which highlight field data collected throughout the program.
$15.00
Now showing 1-12 of 47 2981:
Related products
-
$15.00
2017 Papers
2017 – An Updated National Seismic Hazard Assessment for Australia: Are We Designing for the Right Earthquakes?
Learn moreT. Allen, J. Griffin, M. Leonard, D. Clark and H. Ghasemi
Geoscience Australia (GA) has embarked on a project to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project.The draft NSHA18 update yields many important advances on its predecessors, including: 1) calculation in a full probabilistic framework using the Global Earthquake Model’s OpenQuake-engine; 2) consistent expression of earthquake magnitudes in terms of moment magnitude, MW; 3) inclusion of epistemic uncertainty through the use of alternative source models; 4) inclusion of a national fault-source model based on the Australian Neotectonic Features database; 5)the use of modern ground-motion models; and 6)inclusion of epistemic uncertainty on seismic source models, ground-motion models and fault occurrence and earthquake clusteringmodels.The draft NSHA18 seismic design ground motions are significantly lower than those in the current (1991-era) AS1170.4–2007 hazard map at the 1/500-year annual ground-motion exceedance probability (AEP) level. However, draft values at lower probabilities (i.e., 1/2475-year AEP) are entirely consistent,in terms of the percentage area of land mass exceeding different ground-motion thresholds,with other Stable Continental Regions(e.g.,central & eastern United States). The large reduction in seismic hazard at the 1/500-year AEP level has led to engineering design professionals questioning whether the new draft design values will provide enough structural resilience to potential seismic loads from rare large earthquakes. This process underscores the challenges in developing national-scale probabilistic seismic hazard analyses (PSHAs)in slowly-deforming regions, where a 1/500-year AEP design level is likely to be much lower than theANCOLD Maximum Credible Earthquake (MCE) ground motions. Consequently, a robust discussion among the Standards Australia code committee, hazard practitioners and end users is required to consider alternative hazard and/or risk objectives for future standards.Site-specific PSHAs undertaken for owners and operators of extreme and high consequence dams general-ly require hazard evaluations at lower probabilities than for typical structural designas recommended in AS1170.4.However, modern national assessments, such as the NSHA18, can provide a benchmark in terms of recommended seismicity models, fault-source models, ground-motion models, as well as hazard values, for low-probability site-specific analyses.With a new understanding of earthquake processes in Australia leading to lower ground-motion hazard values for higher probability events (e.g.,1/500-year AEP), we should also ask whether the currently recommended design probabilities provide an acceptable level of seismic resilience to critical facilities (such as dams)and regular structures.
Learn more -
$15.00
2017 Papers
2017 – Steel Fibre Combined with Conventional Reinforcing Joint Free Spillway Chute–Key Elements for Durability and Serviceability
Learn moreTian Sing Ng, David Gardiner
Spillway structures play an important part in regulating the designed reservoir water level and are paramount to protect the structural integrity of the dam structure. Impermeability and tight crack control are prime importance in the design and construction of the spillway lining in order to minimise the potential failure modes of cavitation damage and stagnation pressure related failure. A spillway chute is essentially continuously restrained by the roughness of the rock surface and the ground anchors. The provision of control joints, i.e. expansion, contraction and movement joints,are therefore of little benefit due to the restraint as open cracks will still occur. Steel fibre reinforced concrete has been used for resisting erosion of the surface due to abrasion and/or cavitation. Steel fibres combined with conventional reinforcement also provide an amazing synergy to effectively reinforce concrete due to their ability to provide an effective restraining tensile force across open cracks. For the spillway chute,this means any concrete panel size or shape can be considered, even when the chute is fully restrained. Most importantly, this cost effective solution can be constructed joint free while maintaining watertightness. This paper presents some basic principles governing the design of joint free dam spillways employing steel fibre combined with conventional reinforcement. The focus of this paper describes the design and construction of the 400 m long Happy Valley Dam Outfall Channel together with overseas project examples.
Learn more -
$15.00
2017 Papers
2017 – Seqwater Dam Improvement Program – Assessment, Prioritisation, Justification and Implementation of Dam Upgrades
Learn moreBarton Maher and Michael Peel
The Queensland Bulk Water Supply Authority (Seqwater) manages up to $12 billion of bulk water supply infrastructure and the natural catchments of the region’s water supply sources to ensure a reliable, quality water supply for more than 3million consumers across the region. Seqwater was formed on 1 January 2013 through a merger of three State-owned water businesses, the SEQ Water Grid Manager, LinkWater and the former Seqwater. Seqwater delivers a safe, secure and reliable water supply to South East Queensland, as well as providing essential flood mitigation services and managing catchment health. Seqwater also provides water for irrigation to about 1,200 farmers and offers community recreation facilities enjoyed by more than 2.5 million people each year.Seqwater owns and operates 26 referable dams which fall under the dam safety regulation in Queensland, 51 weirs, and two bore fields across the region. Twelve key dams across the region supply as much as 90% of South East Queensland’s drinking water.In 2011, Seqwater engaged a consultant team of URS (now AECOM) and SKM (now Jacobs) to undertake a portfolio risk assessment of the 26 referable dams and Mount Crosby Weir. At the completion of the project in December 2013 there were 12 dams with life safety risks assessed as being above the ANCOLD and DEWS Limit of Tolerability. A $6.2 million investigation was approved in 2014 to commence planning for the recommended dam safety upgrades and reduce uncertainties in the risk assessment.This program of work was completed in late 2016. The estimated costs of the identified dam safety upgrades exceed $900 million.Confronted with such a large capital program, Seqwater has instigated a number of key actions including:-benchmarking capital investment and rates of risk reduction achieved by other dam owners through a dam owners group-developing a dam safety investment policy to provide a clear guidance on the framework for prioritising and scheduling upgrades-undertaking targeted investigations to reduce uncertainty in the risk assessments including the use of detailed consequence assessment-preparing a prioritised schedule of planned upgrades to gain endorsement from Government and the Dam Safety Regulator. This paper presents the outcomes of the Portfolio Risk Assessment and key changes to the initial risk assessment following further studies. The basis for the dam safety investment policy is presented and the proposed prioritisation tools.The impacts of the risk assessment provisions in the most recent revision of Queensland Acceptable Flood Capacity Guidelines for Water Dams are also discussed. In particular,the application of the economic criteria for determining the minimum upgrade required by the Queensland Dam Safety Regulator and its relevance to other dam owners.
Learn more -
$15.00
2017 Papers
2017 – Dam and Foundation Repsonses to the 2016 MW7.8 Kaikōura Earthquake in New Zealand
Learn moreAndrew Balme, Dan Forster, Tim Logan
The MW7.8 Kaikōura earthquake on 14 November 2016, ruptured over 20 faults during the initial shaking,which lasted nearly two minutes. A complex series of fault ruptures propagated northeast for nearly 180 km from the initial rupture location. Instrumentation from dams across New Zealand shows that whilst most dams did not suffer physical damage, piezometric responses were measured in dams and their foundations. Earthquake related changes in seepage regimes are not unusual and depend on the characteristics of the ground motions,and site specific characteristics that influence how a dam and its foundation respond to ground motions. The ability to measure a piezometric response in a dam or foundation is heavily influenced by the instrumentation network and method of monitoring. Data collected during events such as the Kaikōura earthquake provides valuable information for both characterising performance of a dam during the event, and assisting future analysis such as failure mode assessments. Careful consideration must be given to the scope of installed instrumentation and the frequency of monitoring in order to provide these benefits,and the robustness of the system to ensure it adequately survives the event.
Learn more -
$15.00
2017 Papers
2017 – Tailings Dam Failures – Lessons Learned and Some Recommendations
Learn moreHongyu Li
Although the total tailings dam failure frequency peaked in 1960s through 1980s, the failure rate of significant tailings dams has not dropped. The significant tailings dam failures the mining industry experienced in the recent history include: Merriespruit, South Africa, 1994; Los Frails, Spain, 1998; Kolontár, Hungry, 2010; Mount Polley, Canada, 2014; and Samarco, Brazil, 2015. The dam failures may be due to inadequate design, poor construction and inappropriate operations.This paper discusses the lessons learned and some recommendations and good practices to reduce the tailings dam failure risks. It addresses existing issues and provides some recommendations in risk based design, water management-integrity of facilities and water balance modelling, loading rates, tailings farming, adequate governance and roles and responsibilities of designers and nominated engineer.
Learn more