2016 – Lenthall Dam Crest Gates – From Agony to Relief
Amanda Ament, Thomas Ewing, Frank Nitzsche
The automatic operating buoyancy type spillway gates at Lenthall Dam did not operate properly since installation. This paper discusses the problems encountered, the investigation conducted using computational fluid dynamics to quantify the problems and develop solutions. It describes the design of the modifications to the gate and flow regime and results after construction.
$15.00
Related products
-
$15.00
Papers 2016
2016 – Paradise Dam – An Analysis of Severe Damage to a Modern Dam
Learn moreDavid Scriven, Lawrence Fahey
Paradise Dam is located approximately 20 km north-west of Biggenden and 80 km south-west of Bundaberg on the Burnett River in Queensland. The dam was designed and constructed under an alliance agreement with construction completed in mid 2005. It is a concrete gravity structure up to 52 m high, the primary construction material being roller compacted concrete (RCC).
In January 2013 the flood of record was experienced at the dam with a depth of overflow on the primary spillway reaching 8.65 m following heavy rainfall in the catchment from ex-tropical cyclone Oswald. The peak outflow was approximately 17,000 m3/s. This equated to a 1 in 170 AEP flood event. When the flood receded it was discovered that the dam and surrounds had suffered severe damage in a number of locations including: extensive rock scour downstream of the primary dissipator and the left abutment, damage to portions of the primary dissipator apron, and the loss of most of the primary dissipator end sill.
SunWater initiated a staged remediation program to manage the dam safety risks and by November 2013 had completed the initial Phase 1 Emergency and Phase 2 Interim repairs. Phase 3 of the program was to implement a comprehensive Dam Safety Review (DSR) and a Comprehensive Risk Assessment (CRA). The DSR became arguably the largest ever undertaken by SunWater and included: extensive geotechnical investigations, large scale physical modelling, numerical scour analysis, stability analysis, and an extensive design assessment. This paper describes some of the key aspects of the DSR undertaken related to the flood damage.
Learn more -
$15.00
Papers 2016
2016 – Kangaroo Creek Dam Embankment Raising and Stabilisation – Balancing Competing Objectives
Learn morePeter Buchanan, Malcolm Barker, Paul Maisano, Marius Jonker
Kangaroo Creek Dam located on the Torrens River, approximately 22 km north east of Adelaide, is currently undergoing a major upgrade to address a number of deficiencies, including increasing flood capacity and reducing its vulnerability to major seismic loading.
Originally constructed in the 1960s and raised in 1983, recent reviews have indicated that the dam does not meet modern standards for an extreme consequence category dam.
The original dam was generally constructed from the rock won from the spillway excavation. This rock was quite variable in quality and strength and contained significant portions of low strength schist, which broke down when compacted by the rollers. The nature of this material in places is very fine with characteristics more akin to soil than rock. Review of this material suggests that large seepage flows (say following a major seismic event and rupture of the upstream face slab) could lead to extensive migration of the finer material and possible failure of the embankment. However, it is also envisaged that the zones of coarser material could behave as a rockfill and therefore transmit large seepage flows, which may result in unravelling of the downstream face leading to instability.
This paper addresses the design of the embankment raising and stabilising providing suitable protection against both these possible failure scenarios, which tend to lead to competing solutions. The final solution required the embankment to be considered both as a CFRD and a zoned earth and rockfill embankment.
Learn more -
$15.00
Papers 2016
2016 – Life Loss Estimation from Flood Events: A New Approach to Population Redistribution with Uncertainty
Learn moreWoodrow Lee Fields
Although flooding can lead to many types of severe consequences, the primary objective of the US Army Corps of Engineers (USACE) dam and levee safety programs are to manage risk to the public who rely on those structures to keep them reasonably safe from flooding. Thus, reducing the risk associated with loss of life is paramount. This paper discusses new methods that have been developed for estimating life loss with uncertainty from flood events.
HEC-LifeSim is a dynamic simulation system for estimating life loss with the fundamental intent to simulate population redistribution during an evacuation in conjunction with flood wave propagation. The population redistribution process has been revised from the ground up as an agent based model. In addition to the agent based model, uncertainty analysis has been enhanced. Through Monte Carlo sampling, the natural variability of warning and mobilization timing and likelihood of fatality varies delivering a range of potential life loss from a hazard. Knowledge uncertainty about parameters, such as warning issuance time, can also be defined. To accommodate the new HEC-LifeSim computation engine, an innovative GIS interface has been developed to quickly summarize and animate results. The methods that are discussed in the following provide new tools to estimate life loss and educate local authorities.
Learn more -
$15.00
Papers 2016
2016 – Calculation of the Probability of Failure of Impervious Concrete Lining of Plunge Pools Loaded by High-Velocity Jet Impact
Learn moreM. Mahzari
An analytical approach is presented to calculate the pull-out probability of failure of concrete lining of
Learn more
plunge pools. The concrete lining is aimed to protect the plunge pool against scour where a scour hole may
endanger the stability of the dam foundation. Uplift and pressure loading of the jet are major actions on
the concrete lining. Ground anchors are used to stabilise the lining against these actions and the governing
mode of failure is the pull-out (tensile failure) of these anchors. While the anchoring design for static uplift
is straightforward, dynamic jet action introduces remarkable complexity into the design. The adopted
methodology is based on a stochastic modelling of the high velocity jet action. A bi-linear power spectral
density function is assumed based on the laboratory measurements on the scale physical models done by
the others. This loading mainly reflects the turbulent pressure fluctuations where the jet impacts the plunge
pool floor. Response of the lining, idealised as a single degree of freedom, is calculated by the random
vibration procedures which provides the most realistic structural analysis methodology. It is assumed the
lining is impervious and hence no dynamic under-pressure is developed. The analysis results provide a
probabilistic description of the anchor tensile force which enables the designer to compute the probability
of failure of the anchors knowing their ultimate strength. -
$15.00
Papers 2016
2016 – Dam Safety Management for Upgrade of an Extreme Consequence Storage
Learn moreMark Arnold, Gavan Hunter and Mark Foster
Following the dam safety risk assessment for Greenvale Dam in 2008, Melbourne Water implemented a 3.0 m reservoir level restriction on the operation of the storage as an interim risk reduction measure. The 3.0 m restriction coincided with the ‘as constructed’ top of the chimney filter in the main embankment. This interim action reduced the dam safety risk to below the ANCOLD limit of tolerability.
Dam safety upgrade works were undertaken in 2014/15 to bring the dam in-line with current risk based guidelines and to enable the removal of the interim reservoir restriction, bringing the storage back to full operating capacity. Greenvale Dam was required to remain operational throughout the works and this required careful consideration of the dam safety risk during construction.
Deep excavations were required within the crest and downstream shoulder of the embankments, that,, without adequate management, had the potential to increase risk to the downstream population. Excavations up to 18 m depth were required into the wing embankments for construction of full height filters from foundation to crest, excavations up to 7 m deep were required in the main embankment to expose and connect into the existing filters and secant filter piles up to 13 m deep were used to connect the new chimney filter of the wing embankments with the original chimney filter of the main embankment.
A key element of the design and construction of the upgrade works was managing dam safety during construction. Dam safety considerations included (i) design based decisions to manage the level of exposure; (ii) implementation of further restrictions on reservoir level by the owner Melbourne Water; (iii) construction methods to manage exposure; (iv) an elevated surveillance regime during the works and (v) emergency preparation measures including emergency stockpiles and 24 hour emergency standby crew. The construction based dam safety requirements were focused on early detection and early intervention, and were managed via the project specific Dam Safety Management Plan.
This paper focuses on dam safety management including the decisions made, actions taken and construction requirements and touches on how these relate to the key project features.
Learn more