2016 – Estimating the Probability of Breach for Overtopping of Low to Medium Height Homogenous Earthfill Embankments
Kelly Maslin, Richard Rodd
As an industry there have been many advances in the assessment of the probability of failure associated with a range of failure modes including embankment piping and stability. However, little work has been done on the development of a meaningful tool to assist in the assessment of probabilities of failure for embankment breach due to overtopping.
In the development of this paper a number of embankment overtopping case studies were reviewed and these were used to anchor the suggested probabilities of failure. The case studies assessed were all low to medium height, homogeneous earthfill embankment dams. Consideration has been given to a range of factors including embankment material and construction, embankment geometry, duration of overtopping and the presence and condition of vegetation on the embankment face.
The results of the analysis of the case studies indicate that the probability of breach due to overtopping, particularly for short duration events, is actually relatively low compared to the typical values being adopted within the industry.
It is the intended purpose of this paper that it provides guidance to the industry on the assignment of the probability of embankment breach due to overtopping to allow more consistent, robust and defensible estimates for dam safety risk assessments.
$15.00
Related products
-
$15.00
Papers 2016
2016 – Comparing CRCFORGE Estimates and the New Rare Design Rainfalls
Learn moreJ.H.Green, C.Beesley, C.The, S.Podgerand, A.Frost
The ability to estimate design rainfalls for probabilities rarer than 100 years or 1% Annual Exceedance Probability (AEP) is an essential part of dam hydrology. The earliest means of estimating rare events consisted of a pragmatic curve fitting procedure between the 50 and 100 year design rainfalls and the Probable Maximum Precipitation. In the 1990s a more rigorous method of estimating design rainfalls as rare as 2000 years was developed – the Cooperative Research Centre – FOcussed Rainfall Growth Estimation (CRC-FORGE) method. CRC-FORGE estimates were derived for Victoria in 1997 followed progressively by each of the other states. Over the subsequent two decades CRC-FORGE estimates were an integral part of the risk assessment of large dams – being used to determine the AEP of the Dam Crest Flood.
The Bureau of Meteorology will soon release new rare design rainfall estimates for probabilities to 2000 years. The new rare design rainfalls are a significant improvement on the CRC-FORGE estimates as they have been derived using up to date data; contemporary analytical techniques and a method that is consistent across Australia.
However, there are differences between the CRC-FORGE estimates and the new rare design rainfalls. These differences do not constitute a systematic change to the CRC-FORGE estimates but rather vary with location; duration and probability. The results of a detailed comparison between the CRC-FORGE estimates and the new rare design rainfalls are presented together will an assessment of the possible impacts on previous estimates of the AEP of the Dam Crest Flood.
Learn more -
$15.00
Papers 2016
2016 – Lies, Dam Lies, and Statistics: The Compilation and Analysis of a New Zealand Inventory of Dams
Learn moreK.A. Crawford-Flett, J.J.M. Haskell
Dam inventories can provide a comprehensive understanding of a region’s dam population; from dam quantity, type, age, height, and purpose; to ownership profiling and broad-based regional risk assessment using GIS applications. Historically, New Zealand has lacked a comprehensive inventory of dam assets, instead relying on local and industry knowledge to characterise the dam infrastructure and its key properties, issues, and risks.
This paper presents a cross-sectional characterisation of dams in New Zealand, based on the recent compilation and analysis of a New Zealand Inventory of Dams (NZID). The NZID is the first inventory of its kind for NZ dams, comprising almost 1200 unique structures over 3 m in height. Inventory data was sourced from existing publications, NZSOLD, and regional authorities. The analysis of anonymised inventory data provides an understanding of the number and distribution of assets, along with characteristic physical properties (construction material, height, age, purpose).
Statistical comparisons are drawn in relation to published international dam inventories. Similarities and differences in the international dam populations are noted, particularly with regard to construction era and type. The NZ portfolio is unique in that dams are typically shorter in height, and a significant proportion of structures serve the hydroelectric and energy sectors.
Analysis of the new NZID confirms the need for research that is focused on the long-term performance of aging earth dams, particularly those exceeding 40 years of age. In addition to informing research needs and foci, the new NZID provides statistics on the dam population with far-reaching industry and management applications
Learn more -
$15.00
Papers 2016
2016 – Investigation of the Foundation, Sub-surface Drainage and Slab Anchor Degradation of a Concrete-lined Spillway: Fairbairn Dam, Queensland
Learn morePeter Simson, Deryk Foster
Fairbairn Dam is an earth and rockfill embankment dam with an ungated, concrete-lined, spillway, located at AMTD 685.6 km on the Nogoa River, approximately 16 km south of Emerald in Central Queensland.
Following the flood of record in 2011 it was decided to repair a number of areas of spalling concrete which uncovered a collapsed transverse drain and a large void beneath the chute floor. The spillway chute is designed with subsurface drainage system of floor slabs consisting of alternate strips of concrete footing and gravel bed to aid in the control of uplift. The gravel was flushed from under the spillway floor into collapsed earthenware pipes of the drainage system resulting in an unsupported floor slab. Further investigation was carried out using Ground Penetrating Radar (GPR) which identified additional locations of possible voids. Concrete coring was carried out at selected locations to confirm the voids with some being over 250 mm in depth.
Investigation of the sub-surface drains was carried out using CCTV and showed many of the open jointed earthenware collector pipes had cracked and/or collapsed causing the drainage gravel and founding sedimentary rock to be scoured out by spillway flows entering the system through open contraction joints.
Following the discovery of the foundation scouring it was decided to expose a number of anchor bars in the chute floor to undertake a pull-out testing program. Of the ten anchor bars that were exposed, six were found to have corroded completely with the remaining four noted to be partially corroded and subsequently failed under loading.A geotechnical investigation of the foundation materials was planned to determine the condition and strength of the founding sedimentary rock. In addition, the investigation also included sampling of seepage and reservoir waters to characterise the hydro-geochemistry and its contribution to the deterioration of the anchors.
Artesian conditions also occur within the spillway area, driven by the reservoir, with water passing through an extensive network of pervasive defects in addition to permeable flat-lying strata.Coal seam gas is also known to occur, providing a further contribution to aggressive water geochemistry.
Learn more -
$15.00
Papers 2016
2016 – Extending the Useful Life of Dams in Diverse and Innovative Ways: Three South African case studies
Learn morePeter Blersch
Extending the useful life of a dam to an extent well beyond what was envisaged by the original designer poses diverse challenges. In this paper, three case studies are described, one involving strengthening of two similar dams and two cases involving raising. In all three cases, the dams continue to provide a reliable source of supply in a water scarce country.
The Woodhead and Hely-Hutchinson Dams have substantial historical significance which guided the selection of restressable post-tensioned anchors as the preferred method of strengthening.
The Stettynskloof Dam was almost doubled in height by constructing a clay core rockfill embankment abutting the downstream face of the existing concrete gravity dam. The new structure was well instrumented to cover areas of concern but the dam was found to perform as largely predicted by the designers.
Keerom Dam faced both technical and regulatory challenges that were eventually overcome and the raising of the dam was able to proceed. A further raising will increase the utilisation of this valuable resource still further.
Learn more -
$15.00
Papers 2016
2016 – Hedges Dam – Upstream Face Slip from Rapid Drawdown and Subsequent Remedial Works
Learn moreDavid Laan, Kim Matsen
A slip on the upstream face of Hedges Dam was observed during an annual site inspection in late March 2016. At that stage the slip appeared to be largely contained within the right hand third of the embankment.
By early April, the slip area had developed into a head scarp across the entire central portion of the embankment. Multiple other head scarps were observed, indicating multiple or segmented slips. Several tension cracks were also visible on the face of the dam. The toe of the slips was indicated by a poorly defined bulge.
The most recent drawdown of the reservoir level was identified as a potential driver for the initiation of the slip failure. During the most recent drawdown the maximum drawdown rate was approximately 0.6 m/day whereas in the previous 17 years the maximum drawdown rate was approximately 0.2 m/day.
The remedial works proposed are to place a rockfill weighting zone on the upstream face to stabilise the embankment. The strength of the materials along the sheared surface was back calculated from the mechanics of the failure surface. This data was then used to calculate the shape of the weighting zone required to stabilise the slope.
Learn more