2015 Poster – Remedial works in Bakers Gully Dams – partially decommissioning
Aida Baharestani, Dominic Kerr
North East Water (NEW) manages two reservoirs in series on Bakers Gully Creek, approximately 1.5km south of Bright in north-east Victoria. Both dams were constructed more than 100 years ago and taken out of service in the 1970s.
The Bakers Gully dams had an unacceptable risk profile according to ANCOLD’s Limit of Tolerability.
As the dams are out of service and have no operational benefit, NEW made the decision to partially decommission the dams.
The objective of the work was to lower the consequence categories of the dams from “High C” to “Low” and increase the spillway capacities according to ANCOLD Guidelines and ultimately reduce the dam safety risks to an acceptable level.
This paper describes the different stages of the project ranging from concept design, community engagement, environmental assessment and detailed design. In particular the paper explores the complexities of balancing in cost and public safety with community and ecological values.
Keywords: Dam decommissioning, Community engagement, Severity of damage and loss
$15.00
Now showing 1-12 of 42 2979:
Related products
-
$15.00
2015 Papers
2015 – Physical and computational scour modelling system analysis- Case study for Paradise Dam, Queensland
Learn moreBronson L McPherson, Eric J Lesleighter, David C Scriven, Erik F R Bollaert
A number of medium to major floods in Queensland caused substantial scour around spillway structures. This included the Paradise Dam primary spillway which experienced significant scour of the rock body below the spillway during flooding in January 2013. The occurrence has led to a series of evaluations of the geology, and the prevailing hydraulics behaviour as part of a process to determine the scour mechanism, and to determine the response of the spillway and areas downstream to future floods of larger magnitude. Part of the process has been to utilise a large-scale physical model to obtain transient data which together with the detailed geologic assessment would be incorporated into the comprehensive scour modelling procedures developed by Dr Erik Bollaert, AquaVision Engineering, Switzerland.
Learn more
The paper will describe the design and construction of the physical model with special features to obtain pressure transients from more than 60 transducers, and velocity transients in more than 40 locations using Acoustic Doppler Velocimeter (ADV) instrumentation. The features of the rock scour will be discussed and the geology of the area below the spillway apron will be described. The range of discharges, and the model’s results including the pressure and velocity characteristics will be described in detail to illustrate the violent nature of the turbulence in the energy dissipation zone. The paper will go on to describe the computational scour modelling procedures of calibration and application, demonstrating a “system” approach to spillway scour analysis for plunge pools and similar situations with energy dissipation on natural materials.
Keywords: Spillways, flood hydraulics, hydraulic modelling, rock scour, transients, numerical analysis, energy dissipation. -
$15.00
2015 Papers
2015 – Environmental concerns encountered by lenders financing hydropower projects in developing countries
Learn moreJon Roe
This paper discusses the common environmental issues and requirements project lenders have when financing hydropower dam projects in developing countries. The environmental specialist’s role, as part of the Lender’s Technical Advisor team, is discussed throughout the main phases of project finance (credit approval, financial close, lending/construction and loan repayment/operation). Further, how environmental issues are reviewed and monitored, thereby minimising reputational risks to the lenders are outlined.
Learn more
Lenders typically consider hydropower dam financing, especially reservoir schemes, as high reputational risk loans. Finance is usually syndicated and although most international lenders are Equator Principles signatories or use the International Financing Corporations (IFC) Performance Standards, some lenders have additional environmental guidelines and requirements to enable financing. These differences are discussed.
Common environmental concerns include loss of habitat of endangered and/or threatened species, changes to river flows, erosion and sediment control during construction, and the minimisation and disposal of project wastes.
These issues are discussed drawing on the author’s experience in monitoring environmental issues of hydropower projects in Asia Pacific and Africa, including both smaller run-of-river schemes and larger storage reservoir projects.
Keywords: Environment, impacts, project financing, concerns, lenders, lenders technical advisor. -
$15.00
2015 Papers
2015 Poster – Rowallan Dam: management of flood risk during a major dam upgrade
Learn moreKim Robinson, Andrew Pattle and Thomas Shurvell
Rowallan Dam is a 43m high clay core rock fill dam located in Northern Tasmania. The dam impounds 121GL used for hydro power generation and has a High A consequence category.
Learn more
Over the summer of 2014/15 major reconstruction works were carried out on the dam to repair a piping incident from 1968. The work entailed reconstructing two sections of the dam down to foundation level and the upper 7m of the 568m dam crest. During the work, the dam was temporarily exposed to a significantly increased flood overtopping risk.
A range of measures were taken to manage the overtopping risk; such as increasing the dewatering capacity of the dam, lake draw down, installation of a sheetpile wall, development of emergency backfill procedures and a flood forecasting system.
The focus of this paper is on the flood forecasting system and how this was integrated into the overall management of overtopping risk during construction. The forecast models were run automatically on a 2 hour schedule using the latest BoM forecast, telemetered lake levels and rainfall from 7 gauges surrounding the catchment. The system provided a continuous 7 day lake level forecast which guided the site team on when to release water to manage the storage.
In the event that the lake level forecast reached a predetermined trigger level, the dam safety team would have been automatically notified and various emergency procedures would have been triggered in response to the flood warning.
This paper discusses the measures that were taken to manage the flood risk, how it worked in practice and conclusions which are applicable more generally to managing overtopping risk during dam works.
Keywords: dam construction flood risk, flood forecasting -
$15.00
2015 Papers
2015 – Ailments of the first concrete dam in Sri Lanka and the remedial works
Learn moreSusantha Mediwaka, Nihal Vitharana, Badra Kamaladasa
Nalanda dam is the oldest concrete gravity dam on the Island built in the 1950s by the Ceylon Department of Irrigation. The dam was built in 9 monoliths having a dam crest length of approximately 125m and a maximum height of about 36m. The spillway consists of: (1) a low-level uncontrolled ogee-crested horse-shoe section with a crest length of 46m, and (b) a high-level broad crested weir with a crest length of 43m.
Learn more
It was designed and constructed according to the then standard practices adopted throughout the world. Over the years, Nalanda dam has been showing signs of deterioration which is suspected to be Alkali-Aggregate Reaction (AAR). The dam was also shown to be deficient with respect to the stability levels required by modern standards. Under a program of dam safety improvement of the dams throughout Sri Lanka, it was decided to stabilise Nalanda dam as the first step in addressing a series of issues affecting the dam.
This paper presents the construction history, current issues, design assumptions and salient construction features in the upgrading of the dam to modern dam safety requirements.
Keywords: Concrete dams, dams Sri Lanka, concrete buttressing, upgrade, horse-shoe spillway -
$15.00
2015 Papers
2015 – Improved Rare Design Rainfalls for Australia
Learn moreJ.H. Green; C. Beesley; C. The and S. Podger
Rare design rainfalls for probabilities less frequent than 1% Annual Exceedance Probability (AEP) are an essential part of spillway adequacy assessment as they enable more accurate definition of the design rainfall and flood frequency curves between the 1% AEP and Probable Maximum events.
Learn more
Estimates for rare design rainfalls were previously derived using the CRC-FORGE method which was developed in the 1990s. However, as the method was applied on a state-by-state basis, there are variations in the approach adopted for each region. Differences in the cut-off period for data, the amount of quality controlling of the data undertaken, the base used for the 2% AEP estimates, gridding settings and smoothing processes have created inconsistencies which are particularly apparent in overlapping state border areas.
The Bureau of Meteorology has derived new rare design rainfalls for the whole of Australia using the extensive, quality-controlled rainfall database established for the new Intensity-Frequency-Duration (IFD) design rainfalls. These data have been analysed using a regional LH-moments approach which is more consistent with the method used to derive the new IFDs and which overcomes the limitations of the spatial dependence model in the CRC-FORGE method. In particular, the selection and verification of homogenous regions and the identification of the most appropriate regional probability distribution to adopt relied heavily on the outcomes of the testing of methods undertaken for the new IFDs. However, to focus the analysis on the rarer rainfall events, only the largest events have been used to define the LH-moments.
Keywords: Rare design rainfalls; Intensity-Frequency-Duration (IFD); Annual Exceedance Probability