2015 – Nam Ou VI: Geomembrane face rockfill dam in Laos
A. Scuero, G. Vaschetti, J. Cowland, B. Cai , L. Xuan
Nam Ou VI rockfill dam is part of the Nam Ou VI Hydropower Project under construction in Laos. The scheme includes an 88 metres high rockfill dam, designed as a Geomembrane Face Rockfill Dam (GFRD), which when completed will be the highest GFRD in Laos. The only element providing watertightness to the dam is an exposed composite PVC geomembrane, installed according to an innovative design now being increasingly adopted to construct safe rockfill dams at lower costs. The same system will shortly be installed on a water retaining embankment for a coal mine in NSW, Australia, and has been approved for a tailings dam in Queensland, Australia. At Nam Ou VI the geomembrane system is being installed in three separate stages, following construction of the dam. The first two stages have been completed, and the last stage will start in November 2015. The paper, after a brief discussion of the adopted system’s concept, advantages and precedents, focuses on the construction aspects.
Keywords: GFRD, PVC geomembrane, waterproofing, rockfill dam.
$15.00
Now showing 1-12 of 42 2979:
Related products
-
$15.00
2015 Papers
2015 – Remedial works to reduce seepage under Visegrad HPP dam
Learn moreNikifor Petrovic, Sladoljub Pezerovic
Dam rehabilitation works at the Visegrad Hydropower Project on the River Drina in Bosnia and Herzegovina were completed in October 2014 after two years of very challenging and collaborative effort between the client, designer and contractor.
Learn more
The successfully accomplished remedial works programme was a highly complex geotechnical intervention. The dam was constructed on a karst foundation extending up to 200 m below reservoir floor level. Rates of seepage through the foundation increased over time, from 1.4 m3/s following first impoundment in 1989, to 14.7 m3/s in 2009.
The rehabilitation works comprised:
Preparatory works (site installation, work platforms, conveyer belts, electricity and water supply, drilling and grouting equipment installation);
Site investigation works (drilling of boreholes, measurements of inclination, geo-physical carotage, downhole video, underwater camera recording);
Installation of monitoring equipment and implementation of real time recording system;
Installation of inert material into a sinkhole within the storage area and into the bore holes located upstream of the dam; and
Grouting of the foundation area using different grout mixes and grouting methods.
During rehabilitation works the main achievements were:
A total of about 37,300 m3 of inert material (granular materials with different fractions from 0 to 32 mm) was installed into the foundation cracks and caverns. This was a significant achievement due to very complex geological conditions and resulted in a seepage reduction through the foundation and improvement of the overall safety and stability of the dam.
The total consumption of grouting material was in access of 2,500 tonnes of cement, bentonite, sand and additives.
After completion of the work, seepage of water through the foundation was reduced to about 4.5 m3/s.
Keywords: Seepage, remedial works, dam, grouting, inert material. -
$15.00
2015 Papers
2015 – Readiness to Impound Assessment using a Risk Based Framework – Murum Dam Case Study
Learn moreRichard Herweynen, Tim Griggs, Alan White
The Ministry of Public Utilities, Sarawak, Malaysia used an independent dam safety consultant to advise them on whether the Murum Dam was ready for impoundment. They were looking for a holistic assessment of the dam from a dam safety perspective. As a result, a risk framework was adopted to identify the key issues that needed to be addressed prior to impoundment of the Murum Dam. The process adopted which is presented in this paper, was transparent and defensible; and provided a reasoned approach for which items must be completed prior to the commencement of impoundment. As a result effort was focused on the key activities required prior to impoundment – whether this was the completion of specific works, the availability of key instrumentation to monitor the dams performance, the availability and operation of key dam safety systems, or the appropriate emergency preparedness should a dam safety incident occur during first filling. This systematic process based on a risk based approach, was a useful method of determining the dam’s readiness for impoundment, and provided an excellent way of communicating the importance of activities to the key stakeholders. The authors believe that this method is transferable to other dam projects, for an assessment of a dam’s readiness for impoundment.
Learn more
Keywords: Dam safety, risk, impoundment, reservoir filling. -
$15.00
2015 Papers
2015 – Ailments of the first concrete dam in Sri Lanka and the remedial works
Learn moreSusantha Mediwaka, Nihal Vitharana, Badra Kamaladasa
Nalanda dam is the oldest concrete gravity dam on the Island built in the 1950s by the Ceylon Department of Irrigation. The dam was built in 9 monoliths having a dam crest length of approximately 125m and a maximum height of about 36m. The spillway consists of: (1) a low-level uncontrolled ogee-crested horse-shoe section with a crest length of 46m, and (b) a high-level broad crested weir with a crest length of 43m.
Learn more
It was designed and constructed according to the then standard practices adopted throughout the world. Over the years, Nalanda dam has been showing signs of deterioration which is suspected to be Alkali-Aggregate Reaction (AAR). The dam was also shown to be deficient with respect to the stability levels required by modern standards. Under a program of dam safety improvement of the dams throughout Sri Lanka, it was decided to stabilise Nalanda dam as the first step in addressing a series of issues affecting the dam.
This paper presents the construction history, current issues, design assumptions and salient construction features in the upgrading of the dam to modern dam safety requirements.
Keywords: Concrete dams, dams Sri Lanka, concrete buttressing, upgrade, horse-shoe spillway -
$15.00
2015 Papers
2015 – Abracadabra – the Disappearing Tailings Dam
Learn moreDavid Brett, Robert Longey, Jiri Herza
The independent expert review panel for the Mount Polley Tailings Storage Facility failure came out strongly recommending changes to the technology of tailings dams in British Columbia (and by inference, world-wide). The Panel had examined the historical risk profile of tailings dams in British Columbia and recommended, amongst other things, that best available technology (BAT) be adopted for tailings disposal. Examples of BAT, described by the panel, included “dry-stacking” of filtered, unsaturated, compacted tailings and reduction in the use of water covers in a closure setting. The recommended technologies would require a major shift in current practice and raises many questions, such as:
Learn more
– Are these recommendations appropriate in Australia?
– Does this signal the end of the tailings dams as we know them?
– Do the current Australian National Committee on Large Dams Guidelines (ANCOLD) apply to these new BAT technologies?
– If not, is there a role for ANCOLD in setting standards for the future?
This paper discusses the Mt Polley tailings dam failure and searches for answers to these questions. In particular, this paper reviews the background to “dry-stacking’, to explore the implications for the Australian mining industry.
Keywords: Tailings Dam, Dry Stacking, Best Available Technology -
$15.00
2015 Papers
2015 – Blasting impacts on earth embankment dams
Learn moreRobert Kingsland, Michelle Black, Andrew Russell
Managing the vibration impacts associated with blasting is a challenge for mine planners and operators. In an open cut mining environment production blasting is often an integral part of operations. The management of surface water is a key operational requirement for open cut pits and mine water dams are often a part of the water management infrastructure. Consequently, mine water dams are often subject to blasting impacts.
Learn more
For the mine operator the foremost questions are, “how close can mine blasting progress towards the dam?” and “what is the maximum vibration that the structure can be safely subjected to?” For the dam safety regulator the key concerns are around potential modes of failure, consequence of failure, the likelihood of failure and the management of risk.
With reference to case studies, this paper will discuss the acceptable blasting limits for earth dams, impacts on various dam elements and failure mode analysis. Failures modes discussed include embankment cracking, slope failure and deformation, foundation cracking and outlet structure cracking. Risk mitigation measures will be presented including design, operation and monitoring controls.
Keywords: blasting impacts, embankment dams, coal mine.