2015 – Ailments of the first concrete dam in Sri Lanka and the remedial works
Susantha Mediwaka, Nihal Vitharana, Badra Kamaladasa
Nalanda dam is the oldest concrete gravity dam on the Island built in the 1950s by the Ceylon Department of Irrigation. The dam was built in 9 monoliths having a dam crest length of approximately 125m and a maximum height of about 36m. The spillway consists of: (1) a low-level uncontrolled ogee-crested horse-shoe section with a crest length of 46m, and (b) a high-level broad crested weir with a crest length of 43m.
It was designed and constructed according to the then standard practices adopted throughout the world. Over the years, Nalanda dam has been showing signs of deterioration which is suspected to be Alkali-Aggregate Reaction (AAR). The dam was also shown to be deficient with respect to the stability levels required by modern standards. Under a program of dam safety improvement of the dams throughout Sri Lanka, it was decided to stabilise Nalanda dam as the first step in addressing a series of issues affecting the dam.
This paper presents the construction history, current issues, design assumptions and salient construction features in the upgrading of the dam to modern dam safety requirements.
Keywords: Concrete dams, dams Sri Lanka, concrete buttressing, upgrade, horse-shoe spillway
$15.00
Now showing 1-12 of 42 2979:
Related products
-
$15.00
2015 Papers
2015 – Environmental concerns encountered by lenders financing hydropower projects in developing countries
Learn moreJon Roe
This paper discusses the common environmental issues and requirements project lenders have when financing hydropower dam projects in developing countries. The environmental specialist’s role, as part of the Lender’s Technical Advisor team, is discussed throughout the main phases of project finance (credit approval, financial close, lending/construction and loan repayment/operation). Further, how environmental issues are reviewed and monitored, thereby minimising reputational risks to the lenders are outlined.
Learn more
Lenders typically consider hydropower dam financing, especially reservoir schemes, as high reputational risk loans. Finance is usually syndicated and although most international lenders are Equator Principles signatories or use the International Financing Corporations (IFC) Performance Standards, some lenders have additional environmental guidelines and requirements to enable financing. These differences are discussed.
Common environmental concerns include loss of habitat of endangered and/or threatened species, changes to river flows, erosion and sediment control during construction, and the minimisation and disposal of project wastes.
These issues are discussed drawing on the author’s experience in monitoring environmental issues of hydropower projects in Asia Pacific and Africa, including both smaller run-of-river schemes and larger storage reservoir projects.
Keywords: Environment, impacts, project financing, concerns, lenders, lenders technical advisor. -
$15.00
2015 Papers
2015 – The hydropower dam lenders’ technical advisor – roles, responsibilities and lessons learned
Learn moreAndrew Noble
This paper explores the role of the Lenders’ Technical Advisor (LTA) in identifying and mitigating risks in hydropower dam projects on behalf of the project lenders. It describes the LTA services that are required to manage the pre-financial close, construction and financing periods.
Learn more
There are differing types of risk in both large and small hydropower projects (contractual, commercial, participant, completion, country, technology, reputational, environmental and social, etc.) and these are discussed with regard to how the lenders may be exposed if the risk eventuates either during dam construction or in operation.
Whereas a large dam for water supply would in its own right be a major project, the dam(s) associated with large hydropower will likely represent less than 25% of the total project cost and with this imbalance comes competing drivers for the other components (tunnels, waterways, powerhouse, M&E equipment, transmission lines, substations, etc).
The paper discusses the typical process whereby a hydropower developer has procured a feasibility study and is working towards financial close — covering both large and small types, i.e. storage dams and run-of-river diversion weir types, and the noticeable trend for fast-tracked developments to make a single large step from feasibility study through to engineer-procure-construct (EPC) contracting. This scenario presents some challenges for the initial due diligence when assessing in the pre-financial close stage.
The paper draws on case studies from the Asia Pacific region to illustrate the key elements in hydropower project financing from the LTA’s perspective, together with the author’s recent and current experience on multiple hydropower projects across Asia and Africa in the run-of-river, storage reservoir and pumped storage type of plants. It also brings together findings from the author’s own recent papers on the subjects of hydropower feasibility studies, the roles of lenders, owners and advisors, and tailored for an ANCOLD audience where the focus is on the dams component of hydropower.
Keywords: Lenders’ Technical Advisor, Dams, Hydropower. -
$15.00
2015 Papers
2015 – Estimation of Seismic Hazard for Dams with a Consistent Risk Approach
Learn moreMaz Mahzari and Chi-Fai Wan
Upgrading of an existing dam often faces challenges in both static and seismic safety assessment. The use of new hydrological and seismological data and improved design methods often mean more severe loading which outdates the original design and demands expensive upgrade works. Establishing the design criteria for checking the structural adequacy of an existing dam for multiple unusual load events occurring within a relatively short time frame presents another challenge.
Learn more
A probabilistic approach is presented to rigorously address the effects of multiple load events while maintaining a consistent risk of failure for the structure. This is based on a probabilistic conditional combination where probability of each event is defined and used to develop a joint probability distribution. For instance if an earthquake occurs following a severe flood, the seismic hazard curve of the site can be used to adjust the seismic loading with shorter average recurrence interval to be used in conjunction with the pre-earthquake flood when assessing the structural adequacy of the dam. With this method of adjustment, the design can benefit from the choice of a reduced seismic design loading and hence a more cost effective design solution.
The proposed method is straightforward and can be effectively used in most engineering practices, including the design of hydraulic structures such as dams.
Keywords: Dams, Seismic Hazard, Post-earthquake, Risk analysis -
$15.00
2015 Papers
2015 – Partial Reconstruction of Rowallan Dam to Repair a Piping Incident
Learn moreGavan Hunter, Andrew Pattle and Mark Foster
A piping incident occurred during first filling of Rowallan Dam, Tasmania in 1968. The incident occurred at the interface of the embankment with the spillway wall, a 15 m high near vertical wall, where the contact earthfill eroded into the single stage downstream filter. Repairs were undertaken in 1968/1969 and the reservoir has operated largely without incident since.
Learn more
A risk assessment in 2009 identified that piping through the embankment at the spillway wall interface remained a significant dam safety risk. Investigations in 2010 encountered cracking within the earthfill core at the spillway wall interface.
Dam safety upgrade works were undertaken in 2014/15 to address the piping failure mode at the spillway walls and also within the upper portion of the embankment. The works required excavation down to a rock foundation at depths up to 18 m adjacent to the spillway walls and this excavation provided an unusual opportunity to closely examine active piping features that had been preserved when interim repairs in 1968/69 had arrested the progression of piping. The repair comprised reconstruction of a significant portion of the embankment at the spillway and the reconstruction of the upper 7 m of the crest, which included dual filters downstream of the earthfill core.
The findings from the forensic investigations of the deep excavations adjacent to the right spillway wall are described in this paper along with a summary of finding from the 1968/69 repair works and a discussion of the piping mechanism at the spillway wall. The paper also covers the design and construction of the repair work. The focus of this paper is on advancements in our understanding of piping risk arising from the Rowallan Dam work.
In conclusion, (i) the upgrade works successfully reduced the dam safety risk of Rowallan Dam; (ii) the findings support the methodologies of the piping toolbox; (iii) the case study provides insight into filtering and crack filling mechanisms that have a broader implication for estimating the risks of internal erosion within existing dams; and (iv) the findings support the assessment of the low residual risks for piping through the embankment away from the upgrade work areas (crest reconstruction and spillway walls).
Keywords: Earth and rockfill embankment, piping incident, piping mechanism, dam safety upgrade. -
$15.00
2015 Papers
2015 – Rehabilitation of Calueque Dam: Challenges and successes
Learn moreP C Blersch, W van Wyk , R Steenkamp
Construction of the partially completed Calueque Dam on the Cunene River in Angola was abandoned in 1976 due to the hostilities in Angola. In 1988 the dam was bombed, causing significant damage to the bridge deck, other structures and equipment. Work to complete and rehabilitate the dam commenced in late 2012 and included major earthworks, extensive concrete repairs and refurbishment and installation of mechanical equipment, including ten spillway radial gates and two outlet gates with lifting equipment, emergency gates and cranes, including electrical and control systems. A number of challenges were encountered in planning and executing the project but were overcome largely as a result of detailed historical project information having been retained well beyond the norm and through the involvement of a key member of the original project team in the current project.
Learn more
Keywords: Dam rehabilitation, radial gates, zoned earthfill embankment