2015 – Ailments of the first concrete dam in Sri Lanka and the remedial works
Susantha Mediwaka, Nihal Vitharana, Badra Kamaladasa
Nalanda dam is the oldest concrete gravity dam on the Island built in the 1950s by the Ceylon Department of Irrigation. The dam was built in 9 monoliths having a dam crest length of approximately 125m and a maximum height of about 36m. The spillway consists of: (1) a low-level uncontrolled ogee-crested horse-shoe section with a crest length of 46m, and (b) a high-level broad crested weir with a crest length of 43m.
It was designed and constructed according to the then standard practices adopted throughout the world. Over the years, Nalanda dam has been showing signs of deterioration which is suspected to be Alkali-Aggregate Reaction (AAR). The dam was also shown to be deficient with respect to the stability levels required by modern standards. Under a program of dam safety improvement of the dams throughout Sri Lanka, it was decided to stabilise Nalanda dam as the first step in addressing a series of issues affecting the dam.
This paper presents the construction history, current issues, design assumptions and salient construction features in the upgrading of the dam to modern dam safety requirements.
Keywords: Concrete dams, dams Sri Lanka, concrete buttressing, upgrade, horse-shoe spillway
$15.00
Now showing 1-12 of 42 2979:
Related products
-
$15.00
2015 Papers
2015 – A regional study of water storage options in the Wairarapa
Learn moreMichael Bassett-Foss , David Bouma , Dewi Knappstein
The Wairarapa Water Use Project (WWUP) in the southern North Island, New Zealand, is investigating new water storage schemes involving large dams that will allow the community to make use of the water resources that are currently available, but not necessarily available at the time they are needed. It is estimated that the 12,000 hectares currently irrigated in the Wairarapa could be increased to about 42,000 hectares depending on actual demand. The WWUP provides for a range of possible needs, such as supply of new areas of irrigation, increased reliability for existing irrigation and frost fighting, environmental augmentation of low summer river flows, environmental flushing flows, stock drinking water, power generation, municipal water supply, and recreational use.
Learn more
WWUP objectives include early engagement of stakeholders, early integration of financial, social, cultural and environmental factors in decision-making, management of uncertainty associated with the preliminary level of investigation and evolving regulatory framework, development of an equitable framework for efficiently comparing options, and balancing long and short-term considerations.
A large number of dam options were identified, storing 3 to 80 million m3 of water, and progressively narrowed to a shortlist of 2 sites through a complex process of concept development, desktop studies, site visits, hydrological analyses, cost estimates and multi-criteria analyses.
The WWUP demonstrates how sustainable new major water storage schemes can be promoted in a highly regulated environment of a developed nation.
Keywords: Dams, water storage, stakeholder engagement, environment, water allocation, multi-criteria analysis -
$15.00
2015 Papers
2015 – Environmental concerns encountered by lenders financing hydropower projects in developing countries
Learn moreJon Roe
This paper discusses the common environmental issues and requirements project lenders have when financing hydropower dam projects in developing countries. The environmental specialist’s role, as part of the Lender’s Technical Advisor team, is discussed throughout the main phases of project finance (credit approval, financial close, lending/construction and loan repayment/operation). Further, how environmental issues are reviewed and monitored, thereby minimising reputational risks to the lenders are outlined.
Learn more
Lenders typically consider hydropower dam financing, especially reservoir schemes, as high reputational risk loans. Finance is usually syndicated and although most international lenders are Equator Principles signatories or use the International Financing Corporations (IFC) Performance Standards, some lenders have additional environmental guidelines and requirements to enable financing. These differences are discussed.
Common environmental concerns include loss of habitat of endangered and/or threatened species, changes to river flows, erosion and sediment control during construction, and the minimisation and disposal of project wastes.
These issues are discussed drawing on the author’s experience in monitoring environmental issues of hydropower projects in Asia Pacific and Africa, including both smaller run-of-river schemes and larger storage reservoir projects.
Keywords: Environment, impacts, project financing, concerns, lenders, lenders technical advisor. -
$15.00
2015 Papers
2015 – The Challenges Dam Owners Face When Considering Engineering Repairs in a Commercial Climate
Learn moreSarah McComber, Peyman Bozorgmehr
Boondooma Dam is a concrete-faced rockfill dam with an unlined, uncontrolled spillway chute. Construction was scheduled for completion in 1983; however a spill event occurred during the last stage.of construction Following this spill event an Erosion Control Structure (ECS) was built across the spillway chute to help mitigate any future scouring.
Learn more
The spillway performed as expected during minor spill events in the 1990s and early 2000s. During the significant rainfall event of 2010/11, significant scour occurred to the spillway chute and downstream of the ECS, as a result of the spillway operation.
Following the 2010/11 flood, emergency repairs were made and long term repair solutions were investigated. However, during Tropical Cyclone Oswald in January 2013, the dam experienced the flood of record, and further scour occurred in the spillway chute.
The long term repair solution was reviewed in light of the 2013 damage. A solution is required that would satisfy the engineering problem and prevent further damage, while satisfying the commercial considerations faced by dam owners, insurers, customers and downstream stakeholders.
Keywords: Boondooma Dam, flood damage, scour damage, commercial engineering solutions. -
$15.00
2015 Papers
2015 – Anomalies in design for mining dams
Learn moreJiri Herza and John Phillips
The design of dams for mining projects requires processes and technology that are unfamiliar to many mine owners and managers. Dam designers rely on ANCOLD assessments of Consequence Category, commonly leading to a High rating for mining dams due to a combination of potential loss of life, impact on environment and damage to assets such as mine voids, process plants, workshops, offices, roads, railways etc.
Learn more
From this High Consequence Category the relevant annual exceedance probabilities for design parameters and loading conditions such as earthquakes and floods are selected.
Mining companies have sophisticated methods available for assessing risk, yet for their assets they often adopt an order of magnitude lower security for earthquake and floods even though the consequences in terms of lives at risk and impact on project are similar.
The discrepancies in the design standards lead to situations where extreme dam loads are adopted to prevent damage and loss of life in assets that theoretically would have already collapsed under much lower loads.
One difference may be that some mining dams exist in an environment which is controlled by a single entity. Unlike other dams, failure of these mining dams would therefore impact only individuals and assets which fall under the responsibility of the same entity.
This paper discusses the discrepancies between the design of mining dams and the design of other mine infrastructure. The paper considers the impact of discrepancies on the overall risk to the mine and compares the degree of protection offered by a factor of safety and the influence of reliability of design input parameters, alternate load paths and design redundancy.
Keywords: Dams, tailings dams, mining, acceptable risk, factors of safety -
$15.00
2015 Papers
2015 – Advancements made in the 3D modelling of unlined spillway chutes and applications of comprehensive scour model
Learn morePeyman Bozorgmehr, Sarah McComber, David Harrigan, Erik F R Bollaert
Boondooma Dam is a concrete-faced rockfill dam with an unlined, uncontrolled spillway chute. The Acceptable Flood Capacity of Boondooma Dam is 1:60,000 AEP (equal to the Dam Crest Flood (DCF) and has a maximum inflow of 14,330 m3/s.
Learn more
Significant rainfall events during 2010/11 and 2013 subjected the spillway to moderate discharges over the crest which caused significant scour to the spillway chute.
Following these events, a 3D physical hydraulic model was constructed at a 1:80 scale to investigate repair options. Originally the spillway chute was modelled using a mobile bed set up which showed that that future scour could occur. However, the model could not determine the rate and characteristics of this damage.
In order to determine how future scour may occur, the 3D model was modified using laser survey mapping of the spillway chute after each flood event. Using milled aluminium and concrete capping the model was able to accurately portray the damage profile sustained by the spillway in the 2010/11 and 2013 flood events.
Transient pressure, static pressure, water elevation, velocity and jet measurements of the model were used in a Comprehensive Scour Model to help inform how damage to the chute may progress in future flood events.
Keywords: Boondooma Dam, flood damage, 3D physical hydraulic modelling, comprehensive scour assessment