2015 – A critical assessment of liquefaction triggering sensitivity to design magnitude for Australian dams
T. I. Mote, M.L. So, N. Vitharana, and M. Taylor
This paper explores the sensitivity of selection of earthquake design magnitude to liquefaction triggering in Australia for ground motions typically used for dams. The low seismicity of Australia creates a situation where liquefaction triggering is marginal at design hazard levels and this low level of seismic hazard makes the liquefaction trigger analysis very sensitive to the derivation of the seismic inputs. A methodology is presented that couples the probability of liquefaction triggering with the distribution of earthquake contribution to the hazard from the magnitude-distance deaggregation. The results show that for the “typical” soil profile and input ground motions approximately equivalent to the maximum design earthquake for Australia, the probability of liquefaction triggering varies significantly with the design magnitude selected. Using the maximum credible earthquake or mean magnitude may provide significantly different liquefaction triggering implications. Combining the probability of liquefaction triggering with the contribution of varying magnitudes to calculate liquefaction probability is a useful method to understanding the sensitivity of liquefaction to design magnitude.
Keywords: Liquefaction Assessment, Design Magnitude, Probability of Liquefaction, Magnitude-distance deaggregation, Australia
$15.00
Now showing 1-12 of 42 2979:
Related products
-
$15.00
2015 Papers
2015 – Design of a regulating structure between two reservoirs
Learn morePouya Amirsayafi
Chahnimeh reservoirs with 1.4 billion cubic metres storage capacity have a critical role in water supply for both drinking water and agricultural purposes for the whole Sistan region in eastern Iran. Sistan river used to be the only source for agricultural purposes, so that several gated diversion weirs were constructed on the river in the past 50 years. Because of climate change and upstream development causing flow fluctuations, the river alone is no longer a reliable source for irrigation purposes. So the idea of storing water in Chahnimeh reservoirs and optimised operation of reservoirs have become a necessity. In order to achieve this, development of structures to have efficient operational plan of the river and reservoirs system is underway.
Several projects have been built for more efficient use of the reservoirs, some projects still being designed. One of the latest is the project of “Development of Operational Infrastructures for Chahnimeh Reservoirs” designing a structure to regulate flow between Chahnimeh I and III reservoirs. This kind of structure operating between two connecting reservoirs is so rare, so that innovation is needed to design a cost effective structure covering different operational conditions. Different structures were investigated and the summary of selection of structure types are presented. The paper illustrates challenging design of the project, useful for engineers who might be or will be dealing with such a project. By designing gates with pre-compressed rubber sealing, huge amount of costs associated with having two different gates for different directions of flow are avoided. Because of saturated foundation, by designing a diversion system between two reservoirs, it is possible to undertake pre-consolidation of foundation soil and to drain saturated foundation water. This would reduce settlement of the foundation of the structure after construction to the extent that by construction of a pile group, the gated structure will perform with high reliability for gates function. This type of structure is so rare and the methods and experiences of the presented design can be used by other engineers and consultants in similar projects. The estimated cost of the project is 15 million dollars and with construction under way, completion is expected in 2017.Keywords: regulating structure, gates, reservoirs, reservoir operation
Learn more -
$15.00
2015 Papers
2015 – Estimating potential loss of life downstream of retarding basins
Learn moreSimon Lang, Chriselyn Meneses, Kelly Maslin, Mark Arnold
It is now common practice for dam owners in Australia to take a risk based approach to managing the safety of their large dams. Some dam owners are also using risk based approaches to manage other significant assets. For example, Melbourne Water manage the safety of their retarding basins in a manner similar to their water supply dams.
Learn more
Assessing the risks posed by retarding basins using methods developed for larger dams can raise challenges. For example, the Graham (1999) approach to estimating potential loss of life (PLL) is generally applied when estimating the consequences of dam failure. However, Graham (1999) may not be the most suitable model for estimating PLL downstream of structures with relatively low heights and storage volumes (e.g. retarding basins), given the characteristics of the case histories used to develop the method.
In this paper six potential methods for estimating PLL are tested on four retarding basins in Melbourne. The methods are Graham (1999), the new Reclamation Consequence Estimating Methodology (RCEM), the UK risk assessment for reservoir safety (RARS) method, a spreadsheet application of HEC-FIA 3.0, and empirical methods developed by Jonkman (2007) and Jonkman et al. (2009). Results from the methods are compared, and comment is made about which is most suitable.
Keywords: potential loss of life, dam safety, risk analysis, retarding basins. -
$15.00
2015 Papers
2015 – Design of the overbank spillway for St Georges Dam
Learn moreMonique Eggenhuizen, Eric Lesleighter, Gamini Adikari
St Georges Dam is located on Creswick Creek approximately 2km southeast of the township of Creswick and 135km northwest of Melbourne. The reservoir, located within the Creswick Regional Park and originally constructed to supply water for the Creswick quartz crushing plant in the 1890s, has since been established as a popular recreational storage and is the responsibility of Parks Victoria. The dam is approximately 16m high and located across a relatively steep gully. The embankment consists of earthfill with an upstream face of rock beaching and a grass covered downstream face. The primary and secondary spillways are cut into the right and left abutments respectively.
Learn more
At the completion of a detailed design review, St Georges Dam was assessed to be within the top three of Parks Victoria’s dams portfolio in regards to Public Safety Risks. The detailed design review assessed that the risk position for the dam plotted within the unacceptable region of the ANCOLD Guidelines for the static, earthquake and flood failure modes. As such, upgrade measures were considered to be required. In 2010 and 2011, a number of significant flood events emphasised the importance of upgrade works at this dam, particularly in regards to upgrading the spillway capacity, and consequently Parks Victoria assigned these works a high priority.
SMEC was engaged to design the upgrade works for the dam. A number of arrangements to increase the spillway capacity of the dam were considered, with the most cost effective option being assessed to be a secondary spillway over the dam embankment in the form of a rock chute.
This paper describes the decision making process associated with the option selection and the methodology for designing the overbank spillway which utilised the findings in ‘Riprap Design for Overtopping Flows (Abt & Johnson, 1991), and US Army Corps of Engineers, Waterways Experiment Station, publications of standard riprap gradations and computer program CHANLPRO.
Keywords: Embankment Dams, Spillway, Rock Chute, Erosion Protection -
$15.00
2015 Papers
2015 Poster – 40 years of seismic monitoring of reservoir triggered seismicity: Australian case studies
Learn moreVicki-Ann Dimas, Wayne Peck, Gary Gibson and Russell Cuthbertson
Globally, reservoir triggered seismicity (RTS) is a phenomenon sometimes observed in newly constructed large dams worldwide, for over 50 years now. Over 95 sites have been identified to have caused RTS by the infilling of water reservoirs upon completion of their constructions worldwide. In Australia, there are seven confirmed sites with observed RTS phenomenon that are summarized by temporal and spatial means.
Learn more
With almost 40 years of seismic monitoring, primarily within eastern Australia, several of Australia’s largest dams have monitored and recorded many RTS events. At present, twelve dams are 100 metres and above in height as possible candidates, with seven of these actually causing RTS and a disputed possible eighth dam.
Important factors of RTS are reservoir characteristics (depth of the water column and reservoir volume), geological and tectonic features (how active nearby faults are and how close to the next cycle of stress release they are temporally) and ground water pore pressure (decrease in pore volume under compaction of weight of reservoir and diffusion of reservoir water through porous rock beneath). RTS is an adjustment process often delayed for several years after infilling of reservoir before eventually subsiding within 10 to 30 years, when seismic activity then returns to its prior state of stress.
Generally there are two type of RTS events, either a major fault near the reservoir most likely leading to an earthquake exceeding magnitude 5.0 to 6.0, or more commonly, a series of small shallow earthquakes.
Seismic monitoring of all dams (except for Ord River) are presented with spatial and temporal series of maps and cross sections, showing the largest earthquake, build-up and decay of RTS events.
Keywords: Seismic monitoring, reservoir triggered seismicity (RTS), earthquake cycle -
$15.00
2015 Papers
2015 – An analysis of dam safety incidents in Victoria
Learn moreMaree Dalakis, Dr Saman de Silva, Siraj Perera and Dr Gamini Adikari
This paper describes the results of a statistical and qualitative analysis on historical dam safety incidents in Victoria, the first study of its kind conducted in the State. The study investigates trends arising from qualitative dam safety incident data collected by the Department of Environment, Land, Water and Planning since the year 1996. The reported incidents are categorised based on their severity and statistical trends are identified in relation to the types of incidents common to regulated and unregulated dams, as well as common responses to incidents, including their post-incident operation. The geographical distribution of incidents across the State is also analysed to determine the effects of seismicity on dam safety incident rates. Furthermore, the unique Victorian conditions of sustained drought and subsequent flooding and their impact on incident rates are investigated through the combined analysis of geographical incident distribution and streamflow data. The incident data is further assessed according to the frequency of visual inspection and reporting of the structures in order to gauge the relative influence of these practices, and dam regulation in general, on mitigating incident risk in dams. An understanding of dam safety incident trends and the impact of inspection and reporting practices is increasingly important given the increasing expectation for dam owners to properly operate and maintain their assets with minimal resources and finances.
Learn more
Keywords: dam, safety, incident, historical, failure.