2014 – Changes In Dam Break Hydrodynamic Modelling Practice

S. Suter, G. Singh, and M. Britton

Today, many organisations rely on hydrodynamic modelling to assess the consequences of dam break failure on downstream populations and infrastructure. The availability of finite volume shock-capturing schemes and flexible mesh schematisations in widely used software platforms imply that dam break modelling projects will be carried out differently in the future: Finite volume based platforms allow widespread application of shock-capturing methods and flexible mesh platforms can represent features in the study area more realistically and are more flexible thanks to varying mesh resolutions. Furthermore, the recent adoption of Graphics Processing Unit (GPU) technology in mainstream scientific and engineering computing will also significantly decrease computation times at relatively low cost.
This paper examines the application of finite volume, flexible mesh and GPU technologies to dam break modelling. One-dimensional (1D) modelling results are compared to those from two-dimensional (2D) finite difference and finite volume approaches. The results demonstrate that there are differences between modelling approaches and that the computational speeds of 2D simulations can be significantly reduced by the use of GPU processors.


Want a discount? Become a member.