2012 – The Provision of Engineering Advice for the Emergency Management of the Nathalia Floods, March 2012
P C Styles, A L Garrard
The Victorian town of Nathalia was surrounded by flood water during the March 2012 floods in Northern Victoria.
Nathalia is protected by earthen levees of various sizes and age. Portable aluminium levees were installed during the March 2012 flood event, generally in areas where a permanent levee would restrict access to a park and views. The flood level came within 200mm of the crest of many of the levees and remained at a high level for nearly 2 weeks.
The paper describes the emergency management issues and procedures which relied on engineering advice to provide targeted and relevant remedial works on the levee system as potential problems arose. Engineers worked alongside the SES, CFA, Victoria Police, ADF and other volunteers to monitor, repair and reinforce the levee system on a 24 hour basis. The engineering support continued over a period of approximately 2 weeks, from the time the flood waters commenced rising until they had receded sufficiently for the orders for evacuation of the town to be rescinded.
Keywords: Nathalia, floods, levees, emergency management
$15.00
Now showing 1-12 of 40 2976:
Related products
-
$15.00
2012 Papers
2012 – Assessment of Liquefaction-induced Deformation of Tailings Dams using Effective Stress Analysis Approach
Learn moreHendra Jitno
The design of tailings dams under earthquake loading is quite challenging due to the nature of the tailings materials which are generally liquefiable under earthquake shaking. The design will be more complicated when the dam foundation is also liquefiable material. While assessment of liquefaction potentials is well developed in practice, assessment of liquefaction induced deformation varies from the simplest Newmark’s displacement method to the more complex effective stress dynamic analysis approach. It is generally accepted that the simplified method can be used for cases involving non-liquefiable materials. However, the use of this method for cases involving liquefaction may generally result in overly conservative designs to cater for the many simplified
assumptions in the method. With the advance of computer technology, time and cost are no longer obstacles for using the more appropriate method for estimating liquefaction-induced deformations of a tailings dams and achieving an optimum dam design.This paper attempts to critically discuss issues in seismic design of tailings dams and provide an example of the use of the effective stress dynamic analysis method to estimate the liquefaction-induced deformations of a tailings dam and its importance in optimizing the design. The approach used is capable of estimating pore pressure response of liquefiable materials at any given time during the shaking. The effective stress analysis method used herein is embedded in FLAC software using a specially written FISH routine. Using this method, it can be demonstrated that although liquefaction is an issue, it does not necessarily mean that we must prevent its occurrence. As long as the deformation is acceptable, liquefaction is not necessarily a ‘show stopper’ for the project.
Keywords: liquefaction, seismic deformation, tailings dam design.
Learn more -
$15.00
2012 Papers
2012 – Estimating Individual Risk
Learn moreKelly Maslin, Mark Foster, Len McDonald
A key requirement of assessing the tolerability of dam safety risks is the assessment of individual risk. The ANCOLD Guidelines on Risk Assessment provides guidance on acceptable levels of individual risk and some general guidance on the calculation of individual risk.
Individual risk is a key measure in the consideration of the tolerability of risk, ALARP and development of risk mitigation works. It is essential that there is consistency in the approach to estimating individual risk used across the dams industry.
This paper reviews the approaches taken to estimating individual risk across the dams industry both locally and internationally as well as the experience of other industries.
The paper includes a review of the various methods for estimating the vulnerability of individuals subjected to flood inundation based on historical fatality rates as well as identification of the individual most at risk
The paper then describes a method that has been developed based on the principles used for assessing individual risk due to other hazards, such as landslides. The method includes consideration of a range of factors such as warning time, temporal variation and vulnerability of the individuals most at risk. The method developed provides a transparent, defensible and pragmatic approach to estimating individual risk. Practical guidance and examples are also provided on the application of the method.
Keywords: individual, risk, exposure, fatality -
$15.00
2012 Papers
2012 – Mundaring Weir – Bringing a 19th Century Asset into the 21st Century
Learn moreLouise Thomas, Graeme Mann, Alex Gower
Mundaring Weir is a 41m high concrete gravity dam that was built in c.1900 to supply water to the Western Australian goldfields towns of Coolgardie and Kalgoorlie. The dam was raised by 9.75 metres in c.1950 and impounds a reservoir of 63.5 GL. The c.1900 cast iron outlet works and c.1950 mild steel outlet works are still in operation without any significant modification or refurbishment since installation.
Learn more
Mundaring Weir remains the principal storage for the Goldfields and Agricultural Water Supply (G&AWS). To meet the increasing demand and improve water quality in the G&AWS, the West Australian Water Corporation is upgrading the outlet works, constructing a new pump station and a water treatment plant.
The paper discusses: condition assessments undertaken; basis for refurbishment and the selection and design, including hydraulic modelling, of a staged upgrade of aged outlet structures; and ensuring these works can be undertaken without impacting on supply during the course of the works.
Keywords: Outlet Works, Asset Condition Assessment, Mundaring Weir -
$15.00
2012 Papers
2012 – Evaluation of marginally non-compliant dam filter materials using the No-Erosion Filter test method
Learn moreRobert Kingsland, Jamie Anderson, Andrew Russell, David Brooke
This paper presents the methods, observations and results from a programme of No-Erosion Filter (NEF) testing for the evaluation of a manufactured filter aggregate product that did not conform to normally accepted D15F grading limits. Base materials tested include both dispersive and non-dispersive soils. The results are compared against published no-erosion, excessive erosion and continuing erosion thresholds. The paper comments on the validity of the adopted thresholds and the effectiveness of the NEF test as a filter evaluation method.
Keywords: dam, filter, test, no-erosion
Learn more -
$15.00
2012 Papers
2012 – Seismic Induced Slope Displacement of a Tailings Embankment – Comparison of Numerical and Simplified Analysis Methods
Learn moreZhenhe Song, Arjuna Dissanayake, Shunqin Luo
One of the potential tailing dam failure modes that is commonly evaluated is for prediction of earthquake induced crest displacement in relation to available freeboard. The prediction of seismic induced displacement for tailing dams can be evaluated using simplified approaches, i.e. analytical methods by Newmark (1965), Makdisi and Seed (1978), Bray and Travasarou (2007) and empirical method by Swaisgood (2003) and Pells and Fell (2003).
Learn more
Seismic induced displacements have been estimated using these simplified methods and numerical methods by FLAC and PLAXIS. The results from the numerical modelling were compared with results derived from the simpler analytical and empirical methods. The results indicate the numerical analysis results agrees reasonably well with empirical methods by Swaisgood (2003) and Pells and Fell (2003) and can be used to provide additional confidence in the seismic stability of tailings embankments. However, simplified analytical methods by Newmark (1965), Makdisi and Seed (1978), Bray and Travasarou (2007) could underestimate the seismic induced displacements.
Keywords: Tailing dam, Seismic analysis, numerical analysis, simplified analysis, liquefaction.