2011 – Where is our Weir going – an Unusual Upgrade!
Amanda Ament, Jon Williams, Malcolm Barker
Aplins Weir is located on the Ross River in Townsville, downstream from the Ross River Dam. Previous work had identified Aplins Weir as exhibiting factors of safety below 1.0 under normal operating conditions, with over 1000 persons at risk today in the event of failure. Originally constructed in the early 1920s, Aplins Weir has been upgraded and repaired following various failures on a number of occasions. The end result is a complex reinforced concrete and steel sheet pile composite structure reliant for stability on a number of unreliable components. This paper presents the historical data describing the current configuration of the weir, and the analyses required to evaluate the extisting structure, leading to the design of the proposed upgrade works. The final design involves a retrofit of large diameter cast-in-place lined piles and a heavily reinforced base overlay slab designed to completely bypass all existing vulnerable substructure elements.
$15.00
Now showing 1-12 of 45 2975:
Related products
-
$15.00
2011 Papers
2011 – A case study of an initial Environmental Flows Assessment for an earth dam on a pristine stream in Cape York
Learn moreG. Hadzilacos, ML. Ng, K. Taske, A. Small and B. Loney
Alteration of flow patterns by constructing a dam may have an irreversible impact on ecosystems depending on the timing, duration and frequency of these flows. As part of an Environmental Impact Study, carried out for a proposed mining operation in Australia that included an earth dam on a pristine ephemeral creek, an appropriate waterway management scheme was proposed that required the establishment of measurable instream flow requirements. This paper describes an environmental flow analysis (EFA) carried out to identify flow regimes that achieve the desired ecological outcomes for the affected waterways. The EFA methodology was based on the range-of-variability approach using a calibrated rainfall-runoff model to form the hydrologic basis. The study established a relationship between flow components and ecological variables based upon which the flow requirements were estimated using a simple methodology.
Learn more -
$15.00
2011 Papers
2011 – Awoonga Dam Acceptable Flood Capacity design – the anguish of erosion risk and implications for design
Learn moreMalcolm Barker, Toby Loxton
The Gladstone Area Water Board (GAWB) owns and operates Awoonga Dam, which is a concrete-faced rock fill embankment with a fixed crest concrete spillway on the left bank impounding a storage volume of 770,000 ML.
The current arrangement can accommodate the Probable Maximum Flood, allowing for flow over Saddles 3, 4 and 6 on the left abutment. A comprehensive study was carried out to evaluate the erosion potential downstream from Saddles 3 and 6 as well as other spillway options adjacent to the existing dam. One option was a radical approach including the removal of the Saddle Dam 3 and provision of downstream erosion protection works. This reduced the PAR and improved the overall dam flood capacity; however concerns were expressed about the environmental impact of possible erosion downstream from Saddle 3 for relatively frequent events.
A risk assessment showed that the erosion protection works downstream from the Saddle 3 or 6 were not cost effective and the preferred option for the upgrade was the closure of the Saddle Dam 3 with an auxiliary spillway created in Saddle 6,
This paper summarises the methods used and the outcomes from this study.
Learn more -
$15.00
2011 Papers
2011 – Perspectives of the 2011 Tohoku Earthquake and Tsunami
Learn moreNorihisa Matsumoto
The 2011 Tohoku Earthquake of magnitude 9.0 shook the east Japan and caused enormous damage. As of September 22, The Japanese National Police Agency has confirmed 15,805 deaths, and 4,040 people missing, as well as over 295,047 buildings completely or partially destroyed. About 8,700,000 homes lost power, and about 2,290,000 homes were shut down from water supply. The transportation lifelines such as highways and railways including Shinkansen (high speed train) were disrupted. The earthquake triggered extremely destructive tsunami waves of the height of 15 metres, in the east coast of the Pacific Ocean. Fukushima No.1 nuclear power plant had accidents.
2011 – Perspectives of the 2011 Tohoku Earthquake and Tsunami
-
$15.00
2011 Papers
2011 – Numerical Modelling of Seismic Liquefaction for Bobadil Tailings Dam
Learn moreB. Ghahreman Nejad, H. Taiebat, M. Dillon and K. Seddon
One of the causes of tailings dam failure has been seismically induced liquefaction during earthquakes. Liquefaction, if mobilised, significantly reduces the stiffness and strength of affected soils in the embankment dam or its foundation and may lead to large deformations and dam failure. This paper reports the results of seismic liquefaction assessment and deformation analyses of Bobadil tailings dam located in Tasmania. The tailings dam consists of a perimeter rockfill starter dam which has been raised in stages using the “upstream” construction method. The embankment raises (formed by clay or coarse tailings) are constructed over a foundation of previously deposited tailings in the impoundment which is potentially susceptible to liquefaction. Extensive field and laboratory tests were carried out to assess the tailings liquefaction potential and also to determine the material properties required for seismic stability and deformation analyses. Numerical modelling of seismic liquefaction and deformation analyses were carried out to predict the magnitude and pattern of deformations that may lead to uncontrolled release of tailings. The results of these analyses are presented and compared with literature report of those observed during past earthquakes.
2011 – Numerical Modelling of Seismic Liquefaction for Bobadil Tailings Dam
-
$15.00
2011 Papers
2011 – Management of Floods in 2010 and 2011 through Goulburn-Murray Water Dams
Learn moreStuart Richardson,Tusitha Karunaratne
Goulburn-Murray Water (G-MW) manages 16 large dams across Northern Victoria. Since January 2010 after 10 years of continuous drought a number of significant and historic maximum floods were passed through some of these dams. Although these floods are not considered extreme in a dam safety context, for downstream communities they presented very real emergency situations. There has been significant community concern regarding the impact of the floods resulting in several inquiries.
G-MW has maintained and annually reviewed comprehensive Dam Safety Emergency Management Plans (DSEP) since 1997. During 2009 G-MW began developing and documenting a systemised approach to dam’s management, operation and emergency response by developing and integrating its Operations and Maintenance Manuals, Flood Incident Management Plans and Dam Safety Emergency Management Plans. The plans have been developed to align with the Australian Inter Service Incident Management System (AIIMS) which G-MW uses as its corporate incident response framework.
This paper provides an overview of the benefits of having structured and integrated manuals and response plans for managing assets, flood and extreme events. The paper also shares G-MW’s experiences in developing this integrated management approach.