2011 – Toorourrong Reservoir – Small Dam, Big Problems

Craig Johnson, Mark Arnold

Toorourrong Reservoir is a small storage reservoir which was constructed in 1885 and forms an important part of Melbourne’s water supply network. As part of Melbourne Water’s dam safety upgrade program, remedial works at Toorourrong Reservoir were identified to address deficiencies in flood capacity, embankment stability and to provide protection against piping. These works included an engineered filter system, downstream stabilising berm and raising of the dam crest level by 2.3m through a combination of earthfill and a concrete parapet wall. The existing spillway also required substantial enlargement and the existing scour and outlet structures were to be reconfigured. These works were designed and undertaken by the Water Resources Alliance (WRA).

Preliminary geotechnical investigations indicated the dam was founded on soft alluvial deposits, with the potential for foundation liquefaction under earthquake loading. During the course of subsequent investigations, the full complexity of the dam foundation was realised using numerous techniques including geophysics, CPT

u probes and seismic dilatometer testing. The results of these investigations were used to develop a detailed geotechnical model and embankment design sections. A range of analytical methods were utilised to characterise the liquefaction potential of the foundation, with these making reference to recent developments in this area of practice. Through an extensive assessment and review process, the design soil properties for the foundation were established and the liquefaction potential determined.

Based on these assessments, it was found that the potential for liquefaction existed across the majority of the dam foundation, with discrete soil layers liquefying depending on the intensity of the design seismic event. Strain-weakening (sensitive) soils were also identified in the foundation. A quasi risk-based stability assessment was undertaken for a range of post-liquefaction strength parameters and FoS to determine the sensitivity of the foundation response. Stability analyses were performed which indicated that additional stabilising berms were required at several locations. However, even with these berms, the extremely low post-liquefaction strengths meant that further ground improvement was required. This was assessed further and Grouted Stone Columns (GSC) were ultimately selected as the preferred foundation improvement method for the critical design sections with GSC to be installed both upstream and downstream to reinforce the dam foundation. This is the first time GSC have been used in Australia and some key “lessons learned” will be discussed.

 

2011 – Toorourrong Reservoir – Small Dam, Big Problems

Buy this resource

$15.00