2011 – Recent Developments in Seismic Hazard Analysis
Paul Somerville, Hong Kie Thio
There is a large degree of uncertainty as to the true state of nature (i.e. epistemic uncertainty) regarding many aspects of seismic hazard analysis. Such differences are often highlighted by differences between alternative models put forth by different model proponents. This epistemic uncertainty is treated by giving weight to all viable alternative models through the use of logic trees in probabilistic seismic hazard analysis, rather than just using a preferred model. This paper reviews epistemic uncertainties that arise from alternative distributed earthquake source models; alternative models for the recurrence of earthquakes on those sources; alternative approaches to including active faults; alternative models for the recurrence of earthquakes on active faults; alternative ground motion prediction models for Australia; and alternative methods for incorporating site response. It also reviews alternative representations of the design response spectrum for the development of ground motion time histories.
2011 – Recent Developments in Seismic Hazard Analysis
$15.00
Related products
-
$15.00
Papers 2011
2011 – How do you solve a problem like retarding basins? An asset owner’s perspective
Learn moreKirsty Carroll, Kelly Maslin, Richard Rodd
Melbourne Water manages over 210 retarding basins across Greater Melbourne ranging in size from 4ML to 4700 ML with embankment heights from 0.3m to 10m. Over the years the basins have been designed and constructed by a range of different owners and authorities. Varying design and construction standards with the majority of retarding basins generally being located in highly urbanised areas, has resulted in Melbourne Water having a large portfolio of assets that have potential to pose a significant risk to the downstream communities they are designed to protect.
High level hazard category assessments completed over the last10 years identified that approximately 90 structures were either High or Extreme hazard categories based on the ANCOLD Guidelines on Assessment of the Consequences of Dam Failure.
In an attempt to identify retarding basins requiring priority consideration for remedial works Melbourne Water embarked on a process of completing a dam safety risk assessment for five of the retarding basins in accordance with the ANCOLD Guidelines on Risk Assessment. The objective of the risk assessment was to develop an understanding of the key risk issues that might affect retarding basins as distinct from water supply storages, identify potential remedial works and develop a prioritised risk management strategy for the five basins considered. In completing the risk assessment there was also significant discussion about ways to streamline the process to allow assessment of the remaining basins.
This paper details the results obtained from the risk assessment, investigates the application of the base safety condition and implementation of a risk management strategy. It also looks at similarities between sites to enable common upgrades to be implemented across the range of retarding basins. This paper also discusses the need for guidelines specific to retarding basins to be developed.
How do you solve a problem like retarding basins? An asset owner’s perspective
-
$15.00
Papers 2011
2011 – Hume Dam Spillway Southern Junction Filter and Drainage Works
Learn moreRod Westmore, Andrew George& Robert Wilson
A 2007 risk assessment of Hume Dam concluded that the dam did not satisfy the ANCOLD societal risk criteria for existing dams. The Spillway Southern Junction (SSJ) and its associated failure modes was one of the main contributors to the risk profile.
Upgrade works at the SSJ involved the retro-installation of additional filter and drainage materials in the 40m high embankment immediately downstream of the tower block and central core wall by installation of more than 10,000m of secant caisson drilled columns backfilled with filter and/or drainage materials.
This paper describes the design and construction issues associated with the upgrade works, the equipment and methodologies developed to achieve the principal design objectives of coverage and connectivity of filter and drainage columns, and optimisation of compaction of the backfill materials. It also describes how these requirements were met whilst minimising adverse affects such as vertical deviation, excessive vibration, subsidence of secant filter columns during construction, and clay smearing of the perimeter of individual columns.
Hume Dam Spillway Southern Junction Filter and Drainage Works
-
$15.00
Papers 2011
2011 – Refurbishing Outlet Valves utilising Shutdown Periods
Learn moreFrank Nitzsche
Awoonga Dam is the sole source of water for the City of Gladstone and the heavy industries in the region. The area’s distribution reservoirs hold little more than a day’s supply. Extended water supply disruption could have severe economic impacts.
The nine large valves in the inlet tower and river outlet of the dam cannot be inspected or maintained without shutting down the entire water abstraction system. Consequentially limited maintenance has been carried out in the 25 years since the valves were installed.
Recent Dam Safety inspections carried out for the dam owner, the Gladstone Area Water Board (GAWB,) noted some deterioration of the valves and recommended that the valves should be removed, inspected and refurbished as necessary
GAWB was thus presented with a daunting challenge to refurbish valves at Awoonga Dam, as it was generally believed that their removal for refurbishment would not be possible within the time limitations imposed by the system and customer requirements.
In 2008 GAWB commissioned GHD to develop a strategy to refurbish the valves within a 12 hour shutdown period. The strategy proposed and adopted required a rigorous risk management approach and close collaboration between GAWB’s operational staff, two contractors and the consulting engineers. The work was successfully completed during 2011.
This paper discussed the strategies and processes developed and how the project planning, supervision and execution was driven by the risk management based approach. It also highlights some of the experiences and lessons learnt during the project.
2011 – Refurbishing Outlet Valves utilising Shutdown Periods
-
$15.00
Papers 2011
2011 – How SunWater, as a commercial dam owner makes investment decisions for dam safety upgrades
Learn moreRobert Keogh RPEQ, CE Civil (Hon), Mal Halwala, Peter Boettcher, Renee Butterfield
SunWater is a Government Owned Corporation (GOC), operating in a competitive market on an equal commercial footing with the private sector. SunWater owns 23 referable dams. Over the last fifty years there has been significant development of the methodologies used to estimate extreme rainfall events. These have resulted in substantial increases in probable maximum flood (PMF) estimates for most of SunWater’s dams.
SunWater has undertaken a Comprehensive Risk Assessment program across its portfolio. SunWater now has a good understanding of the deficiencies and available risk reduction options for each dam under all load conditions. The total cost to rectify all deficiencies is several hundred million dollars and well beyond the financial capacity of the organisation in the short term.
ANCOLD and Regulators have different published opinions on decision making criteria for dam safety upgrades. Once the conditions for the tolerability of Societal and Individual Risk are satisfied the onus remains with the dam owner to meet the ALARP principle. The decision making process is complicated by uncertainties in inputs to risk assessments. The authors have considered these uncertainties as well as the legal implications, differing ANCOLD and Regulator requirements, and business and economic loss, in formulating the decision making process. The methodology is simplified but effective. If the process is followed the dam owner’s investments will meet ANCOLD, Regulatory, legal and business requirements.
This Paper details a logical decision making process designed to allow a non technical Board to balance social, legal and financial objectives. The process considers overall risk, tolerability, the ALARP principle, and project prioritisation. The process is being used by SunWater to determine the Acceptable Flood Capacity of each dam, which dams will be upgraded, priorities and scheduling of each upgrade.
How SunWater, as a commercial dam owner makes investment decisions for dam safety upgrades
Learn more -
$15.00
Papers 2011
2011 – The Quality Chain of Dam Surveillance
Learn moreDan Forster, Murray Gillon
A robust and defensible dam surveillance process is considered to be the ‘front-line of defence’ in ensuring dams do not present an unacceptable risk to people, property and the environment. The concept of a ‘Quality Chain of Dam Surveillance’ describes the surveillance process as a multi-linked chain where each step in the process forms a critical link. Without rigorous attention given to quality assurance links in the chain can become tenuous or broken and thus compromise the integrity of the whole chain. Hydro Tasmania is currently re-engineering its existing surveillance process using the Quality Chain of Dam Surveillance as a basis.
This paper presents the concept of the quality chain and uses the Hydro Tasmania improvement initiative as an example application of the concept. The paper is intended to provide a fresh perspective on what is sometimes considered a stale topic and reinforces the need for a considered approach to dam surveillance.
2011 – The Quality Chain of Dam Surveillance
Learn more