2011 – Numerical Modelling of Seismic Liquefaction for Bobadil Tailings Dam
B. Ghahreman Nejad, H. Taiebat, M. Dillon and K. Seddon
One of the causes of tailings dam failure has been seismically induced liquefaction during earthquakes. Liquefaction, if mobilised, significantly reduces the stiffness and strength of affected soils in the embankment dam or its foundation and may lead to large deformations and dam failure. This paper reports the results of seismic liquefaction assessment and deformation analyses of Bobadil tailings dam located in Tasmania. The tailings dam consists of a perimeter rockfill starter dam which has been raised in stages using the “upstream” construction method. The embankment raises (formed by clay or coarse tailings) are constructed over a foundation of previously deposited tailings in the impoundment which is potentially susceptible to liquefaction. Extensive field and laboratory tests were carried out to assess the tailings liquefaction potential and also to determine the material properties required for seismic stability and deformation analyses. Numerical modelling of seismic liquefaction and deformation analyses were carried out to predict the magnitude and pattern of deformations that may lead to uncontrolled release of tailings. The results of these analyses are presented and compared with literature report of those observed during past earthquakes.
2011 – Numerical Modelling of Seismic Liquefaction for Bobadil Tailings Dam
$15.00
Now showing 1-12 of 45 2975:
Related products
-
$15.00
2011 Papers
2011 – A Statewide Approach to Benchmarking Dam Safety Risk and Continuous Improvement
Learn moreSusan Ryanand Siraj Perera
This paper describes the benefits of the statewide risk reporting framework used in dam safety regulation in Victoria and its ongoing development. Key to this approach is a web-hosted reporting system and benchmarking process, established by the Department of Sustainability and Environment in collaboration with the Victorian water industry. This is the first time that such an approach has been used in Australia for publicly owned dams.
Sector-wide reporting on dam safety is central to the objective-based approach used by the Department in the governance and regulation of the water industry. Water corporations submit detailed annual reports on dam safety status. This incorporates ‘self assessment’ against performance criteria based on ANCOLD risk and dam safety management guidelines. These are collated to produce a statewide report of industry-wide results on the progress of dam safety management programs. This benchmarking process is providing a driver for on-going improvement and proving to be an effective tool for regulation of publicly owned dams.
The reporting framework has significantly advanced the understanding of dam safety risk across the water sector, with outputs easily understood by both dam safety practitioners and decision makers. It has improved monitoring and trend analysis of risk management practices, and is informing policy development on demonstration of the ALARP principle and decision-making about appropriate long-term dam safety levels.
-
$15.00
2011 Papers
2011 – Modelling Studies to Design and Assess Decommissioning Actions for a Seismically Unsafe, Concrete Arch Dam
Learn moreKrey Price, Mike Harvey, Bob Mussetter, Stuart Trabant
The California Department of Water Resources, Division of Dam Safety (DWR-DSD), has determined that San Clemente Dam on the Carmel River in Monterey County, California, does not meet seismic safety standards. Several alternatives have been considered to decommission the dam and eliminate the hazard, including thickening of the 25-m-high, concrete arch structure, lowering the dam, and complete removal. At the present time, the upstream reservoir that had an original storage capacity of about 1.8 GL, is essentially filled with sediment. The 29-km reach of the Carmel River between the dam and the Pacific Ocean passes through urbanised areas within the upscale Carmel Valley; flooding and channel stability in these areas are significant concerns. The Carmel River also contains habitat for the endangered steelhead and red-legged frog that could be positively or negatively affected by the decommissioning.
After an extensive series of hydraulic and sediment transport modelling studies, two actions remain under consideration: (1) dam thickening, which will require reconstruction of the existing fish ladder and construction of an adjacent, 3-metre diameter sluice gate to prevent sediment build-up from blocking the ladder outlet, and (2) removal of the dam and rerouting the river into a tributary branch of the reservoir, which would isolate approximately 65 percent of the existing sediment deposits from future river flows and eliminate a significant fish-passage problem. Both options were modelled extensively in hydrologic, hydraulic, and sediment transport applications. Since available models do not adequately represent sediment dynamics at the sluice gate, a special sediment routing model was formulated to evaluate this aspect of Option 1. Option 2 is currently preferred by the resource agencies, since it would optimise endangered species habitat; however, this option would be three to four times more expensive than Option 1, and funding limitations may impact the alternative selection. Evaluation efforts are ongoing, along with approaches to address liability issues associated with the decommissioning actions for the privately owned facility, while optimising the benefits and costs of the selected action.
Learn more -
$15.00
2011 Papers
2011 – Tailings Storage, Current and Future Trends
Learn moreBruce Brown, Mark Coghill
Tailings management practices have evolved significantly over the last 30 to 40 years with emphasis on long term geotechnical and geochemical stability to meet community expectations and company liabilities. The main drivers have been environmental protection both during operations and post closure, public safety and water conservation. Mining companies have become aware of the significant risks resulting from the operation of tailings facilities with a number of high profile failures occurring in recent times. The common practice of building a containment structure and depositing tailings as unthickened slurry is being challenged and tested against alternative tailings treatment technologies. These include high rate thickening, paste thickening and filtration. The potential benefits of these technologies include significant reduction in process water losses, reduced design duties for the confinement structures and improved conditions for closure. Notwithstanding these potential benefits, very few facilities have implemented the new technologies due to economic constraints imposed by the evaluation methods used by the mining industry. This paper summarises the available tailings treatment technologies and the resulting implications for tailings facility design. It reviews the benefits and critiques the economic evaluation method currently in use and recommends that the industry changes its evaluation methodology to drive future trends.
Tailings Storage, Current and Future Trends
-
$15.00
2011 Papers
2011 – The Recent Developments and Application of Large Ground Anchors for Dams
Learn moreMark R. Sinclair & Richard J. Rodd
Over the last six years there have been ongoing significant developments in the design, fabrication and particularly of the corrosion protection details for high capacity ( >13,500kN MBL ) re-stressable ground anchors used to improve stability of gravity dams. These Australian based developments and the resultant specifications and details have now become the de-facto standards adopted.
The ANCOLD Register dams to have had this generation of cables installed have included; Ross River Dam, Lake Manchester Dam, Catagunya Dam, Tinaroo Falls Dam and Wellington Dam. These projects include the highest capacity permanent ground anchors installed to date worldwide. Some smaller capacity anchors installed into dams have also benefited from this technology.
The Recent Developments and Application of Large Ground Anchors for
-
$15.00
2011 Papers
2011 – January 2011 Brisbane River Floods and Examination by Media of the Dam Operations
Learn moreMichel Raymond
The large flood inundating areas of Brisbane and Ipswich along the lower Brisbane River below Wivenhoe Dam in January 2011 was extensively reported by the media. An independent Commission of Inquiry was formed soon after the flood with broad terms of reference including matters related to dam operations. Prior to the Inquiry hearings and findings, reporting in the media continued and made strong allegations of blame of the flood on dam operations. The media relied on limited expertise but the articles were portrayed and subsequently re-produced by other media outlets as ‘expert’ analyses. The author’s interpretation is that media claims were misleading and damaging to the public confidence in the role of dams for flood mitigation, and this damage occurred before official Inquiry findings were available.
A brief summary is presented of now publicly available credible reports on the flood event, and a summary is also presented of the key matters and allegations reported in the media related to the dam operations. An analysis and commentary of media reporting on the flood operations of the Wivenhoe Dam is presented in the context of time and people with reference to information and expertise available to the media, and media conduct in relation to fair public interest and professional practice.
Matters of importance for objective and informed knowledge of key technical matters in relation to operation of dams, dam safety, and the inevitable extremes of nature and floods are discussed. The paper then examines the roles and possible limitations of dams engineering professionals in relation to media reporting of such matters.
This paper solely focuses on matters of media examination of the floods and dam operations, and generally does not comment on technical matters that are in the terms of reference of the Commission of Inquiry.
2011 – January 2011 Brisbane River Floods and Examination by Media of the Dam Operations