2011 – If it ain’t broke don’t fix it – or should you? Lessons learned from relying on past performance of mechanical assets.
Stuart Richardson
The application of maintenance to mechanical assets is a mature and well understood discipline. Although techniques and methods differ from industry to industry, the experiences and knowledge of practitioners should be transferable, but are they?
A challenge faced by all engineers is finding the appropriate balance between obtaining detailed physical evidence of asset condition through invasive disassembly and inspection against assessing condition based on monitoring and past performance.
This paper describes the experiences of the author in applying mechanical maintenance skills in the dams environment and shares some important lessons learned along the way.
$15.00
Now showing 1-12 of 45 2975:
Related products
-
$15.00
2011 Papers
2011 – Reliability of simplified methods for evaluation of earthquake-induced displacement in earth and rockfill dams
Learn moreMojtaba E. Kan and Hossein A. Taiebat
Abstract: The simplified procedures for evaluation of earthquake induced displacement in earth and rockfill dams are widely used in practice. These methods are simple, inexpensive, and substantially less time consuming as compared to complicated numerical approaches. They are especially recommended to be used as a screening tool, to identify embankments with marginal factor of safety, assuming that these methods always give conservative estimates of deformation. However recent studies show that application of these methods may not be conservative in some cases, especially when the tuning ratio of a dam is within a certain range. In this paper the fundamental theory behind the simplified methods is critically reviewed and practical guidelines are presented that can be used to identify cases where the simplified procedures may not be conservative.
-
$15.00
2011 Papers
2011 – Hume Dam Spillway Southern Junction Filter and Drainage Works
Learn moreRod Westmore, Andrew George& Robert Wilson
A 2007 risk assessment of Hume Dam concluded that the dam did not satisfy the ANCOLD societal risk criteria for existing dams. The Spillway Southern Junction (SSJ) and its associated failure modes was one of the main contributors to the risk profile.
Upgrade works at the SSJ involved the retro-installation of additional filter and drainage materials in the 40m high embankment immediately downstream of the tower block and central core wall by installation of more than 10,000m of secant caisson drilled columns backfilled with filter and/or drainage materials.
This paper describes the design and construction issues associated with the upgrade works, the equipment and methodologies developed to achieve the principal design objectives of coverage and connectivity of filter and drainage columns, and optimisation of compaction of the backfill materials. It also describes how these requirements were met whilst minimising adverse affects such as vertical deviation, excessive vibration, subsidence of secant filter columns during construction, and clay smearing of the perimeter of individual columns.
Hume Dam Spillway Southern Junction Filter and Drainage Works
-
$15.00
2011 Papers
2011 – Management of Floods in 2010 and 2011 through Goulburn-Murray Water Dams
Learn moreStuart Richardson,Tusitha Karunaratne
Goulburn-Murray Water (G-MW) manages 16 large dams across Northern Victoria. Since January 2010 after 10 years of continuous drought a number of significant and historic maximum floods were passed through some of these dams. Although these floods are not considered extreme in a dam safety context, for downstream communities they presented very real emergency situations. There has been significant community concern regarding the impact of the floods resulting in several inquiries.
G-MW has maintained and annually reviewed comprehensive Dam Safety Emergency Management Plans (DSEP) since 1997. During 2009 G-MW began developing and documenting a systemised approach to dam’s management, operation and emergency response by developing and integrating its Operations and Maintenance Manuals, Flood Incident Management Plans and Dam Safety Emergency Management Plans. The plans have been developed to align with the Australian Inter Service Incident Management System (AIIMS) which G-MW uses as its corporate incident response framework.
This paper provides an overview of the benefits of having structured and integrated manuals and response plans for managing assets, flood and extreme events. The paper also shares G-MW’s experiences in developing this integrated management approach.
-
$15.00
2011 Papers
2011 – Investigating the Piping Risk Associated with Seepage at Monbulk Saddle Dam of Silvan Reservoir, Victoria
Learn moreMonique de Moel, Mark Arnold, Gamini Adikari
Monbulk Saddle Dam, built in 1929, is one of two saddle dams located at the southern end of Silvan Reservoir, near the township of Monbulk, Victoria. The saddle dam is a 5.3m high earthfill embankment with a 230mm wide, centrally located, concrete core wall. The reservoir retained is located in the valley of Stonyford Creek, and impounds approximately 40,500 ML of water at FSL.
Excessive seepage at the right abutment of Monbulk Saddle Dam has been an issue since the early 1970’s. The reservoir has been operating with a level restriction since then to reduce the seepage flows. However; this restriction limits the operational flexibility of the storage. Early investigations concluded that the most likely mechanism for these excessive seepage flows was a defect in the concrete core wall.
Melbourne Water Corporation, (the owner and the operator of the reservoir), undertook a risk assessment for Silvan Reservoir as part of a review of its dams asset portfolio. Based on the information then available, the risk assessment was undertaken using the criteria and guidelines developed by ANCOLD. The result was that the piping risks associated with the seepage from the west abutment at Monbulk Saddle Dam was unacceptable. The risk assessment Panel also cast doubt on the likelihood of the seepage being caused by a defect in the concrete core wall. Melbourne Water therefore engaged SMEC Australia to investigate the likely causes and mechanisms for this seepage and to develop suitable remedial measures for the dam.
The investigations have included a desktop review of historical information, test pit investigations, Sonic borehole drilling, dynamic cone penetration tests, an infrared thermal imaging investigation and an electromagnetic groundwater seepage flow mapping investigation.
These investigations have shown that the most likely cause of the seepage is the presence of permeable foundation layers located beneath and around the existing core wall as the core wall does not extend over the full length of the embankment and becomes shallower towards the abutments.
To satisfy the ALARP principle; risk reduction remedial works Concept Designs are being developed and reviewed.
-
$15.00
2011 Papers
2011 – January 2011 Brisbane River Floods and Examination by Media of the Dam Operations
Learn moreMichel Raymond
The large flood inundating areas of Brisbane and Ipswich along the lower Brisbane River below Wivenhoe Dam in January 2011 was extensively reported by the media. An independent Commission of Inquiry was formed soon after the flood with broad terms of reference including matters related to dam operations. Prior to the Inquiry hearings and findings, reporting in the media continued and made strong allegations of blame of the flood on dam operations. The media relied on limited expertise but the articles were portrayed and subsequently re-produced by other media outlets as ‘expert’ analyses. The author’s interpretation is that media claims were misleading and damaging to the public confidence in the role of dams for flood mitigation, and this damage occurred before official Inquiry findings were available.
A brief summary is presented of now publicly available credible reports on the flood event, and a summary is also presented of the key matters and allegations reported in the media related to the dam operations. An analysis and commentary of media reporting on the flood operations of the Wivenhoe Dam is presented in the context of time and people with reference to information and expertise available to the media, and media conduct in relation to fair public interest and professional practice.
Matters of importance for objective and informed knowledge of key technical matters in relation to operation of dams, dam safety, and the inevitable extremes of nature and floods are discussed. The paper then examines the roles and possible limitations of dams engineering professionals in relation to media reporting of such matters.
This paper solely focuses on matters of media examination of the floods and dam operations, and generally does not comment on technical matters that are in the terms of reference of the Commission of Inquiry.
2011 – January 2011 Brisbane River Floods and Examination by Media of the Dam Operations