2011 – Awoonga Dam Acceptable Flood Capacity design – the anguish of erosion risk and implications for design
Malcolm Barker, Toby Loxton
The Gladstone Area Water Board (GAWB) owns and operates Awoonga Dam, which is a concrete-faced rock fill embankment with a fixed crest concrete spillway on the left bank impounding a storage volume of 770,000 ML.
The current arrangement can accommodate the Probable Maximum Flood, allowing for flow over Saddles 3, 4 and 6 on the left abutment. A comprehensive study was carried out to evaluate the erosion potential downstream from Saddles 3 and 6 as well as other spillway options adjacent to the existing dam. One option was a radical approach including the removal of the Saddle Dam 3 and provision of downstream erosion protection works. This reduced the PAR and improved the overall dam flood capacity; however concerns were expressed about the environmental impact of possible erosion downstream from Saddle 3 for relatively frequent events.
A risk assessment showed that the erosion protection works downstream from the Saddle 3 or 6 were not cost effective and the preferred option for the upgrade was the closure of the Saddle Dam 3 with an auxiliary spillway created in Saddle 6,
This paper summarises the methods used and the outcomes from this study.
$15.00
Now showing 1-12 of 45 2975:
Related products
-
$15.00
2011 Papers
2011 – A case study of an initial Environmental Flows Assessment for an earth dam on a pristine stream in Cape York
Learn moreG. Hadzilacos, ML. Ng, K. Taske, A. Small and B. Loney
Alteration of flow patterns by constructing a dam may have an irreversible impact on ecosystems depending on the timing, duration and frequency of these flows. As part of an Environmental Impact Study, carried out for a proposed mining operation in Australia that included an earth dam on a pristine ephemeral creek, an appropriate waterway management scheme was proposed that required the establishment of measurable instream flow requirements. This paper describes an environmental flow analysis (EFA) carried out to identify flow regimes that achieve the desired ecological outcomes for the affected waterways. The EFA methodology was based on the range-of-variability approach using a calibrated rainfall-runoff model to form the hydrologic basis. The study established a relationship between flow components and ecological variables based upon which the flow requirements were estimated using a simple methodology.
Learn more -
$15.00
2011 Papers
2011 – Where is our Weir going – an Unusual Upgrade!
Learn moreAmanda Ament, Jon Williams, Malcolm Barker
Aplins Weir is located on the Ross River in Townsville, downstream from the Ross River Dam. Previous work had identified Aplins Weir as exhibiting factors of safety below 1.0 under normal operating conditions, with over 1000 persons at risk today in the event of failure. Originally constructed in the early 1920s, Aplins Weir has been upgraded and repaired following various failures on a number of occasions. The end result is a complex reinforced concrete and steel sheet pile composite structure reliant for stability on a number of unreliable components. This paper presents the historical data describing the current configuration of the weir, and the analyses required to evaluate the extisting structure, leading to the design of the proposed upgrade works. The final design involves a retrofit of large diameter cast-in-place lined piles and a heavily reinforced base overlay slab designed to completely bypass all existing vulnerable substructure elements.
2011 – Where is our Weir going – an Unusual Upgrade!
Learn more -
$15.00
2011 Papers
2011 – Hinze Dam Stage 3 Foundation Curtain Grouting
Learn moreRob Campbell, Tom Kolbe, Ron Fleming, Christopher Dann
Hinze Dam is an Extreme hazard category water supply dam situated in the Queensland Gold Coast hinterland, owned and operated by Seqwater (formerly owned by Gold Coast City Council). The Hinze Dam Stage 3 works involved raising the previously 65m high central core earth and rockfill embankment approximately 15m to a maximum height of approximately 80m.
The Stage 3 works included a program of foundation curtain grouting, consisting of six discrete grout panels, five of those beneath areas where the embankment was extended and one beneath part of the spillway enhancement works. Five of the six grout panels were essentially single row panels, with one or more partial rows added in specific areas of high grout take. The remaining grout panel (Panel 4) was constructed as a triple row panel.
A number of challenges were encountered and overcome during the Stage 3 foundation grouting works due to highly variable foundation conditions, ranging from extremely low strength residual soil to highly fractured and permeable high strength rock.
The grouting works were undertaken using downstage grouting techniques, with manual recording of data, manual control of grout pressures and injection rates and use of predominantly neat cement grout mixes.
A key issue in the execution of the foundation grouting works was the maximum grout pressures applied to the foundation and this was discussed in detail between the project design team and external review panel. This paper presents the results from project specific grout trials and production grouting to demonstrate that closure of the foundation was consistently achieved (with one exception discussed herein), which supports the grouting approach employed and the adopted grout pressures.
This paper presents a case study description of the Stage 3 foundation curtain grouting works, including a summary of key learnings which may be of benefit to future dam foundation curtain grouting projects.
-
$15.00
2011 Papers
2011 – If it ain’t broke don’t fix it – or should you? Lessons learned from relying on past performance of mechanical assets.
Learn moreStuart Richardson
The application of maintenance to mechanical assets is a mature and well understood discipline. Although techniques and methods differ from industry to industry, the experiences and knowledge of practitioners should be transferable, but are they?
A challenge faced by all engineers is finding the appropriate balance between obtaining detailed physical evidence of asset condition through invasive disassembly and inspection against assessing condition based on monitoring and past performance.
This paper describes the experiences of the author in applying mechanical maintenance skills in the dams environment and shares some important lessons learned along the way.
Learn more -
$15.00
2011 Papers
2011 – Enlarged Cotter Dam Saddle Dams – Materials and Construction
Learn moreMark Locke and Scott Kindred
The Bulk Water Alliance (BWA) consisting of ACTEW and ACTEW-AGL, GHD, and John Holland / Abigroup, are delivering the Enlarged Cotter Dam project in Canberra, ACT. The greatly enlarged reservoir will require two central core rockfill saddle dams on a ridge adjacent to the main dam site. Construction of these two dams was completed in early 2011. The challenges of the site and the Alliance delivery model have provided opportunities for innovation in both use of materials and construction.
The dam foundations were variably weathered and fractured with some highly weathered seams extending below the cutoff trench foundation. The foundation was grouted effectively using GIN grouting and the entire cutoff trench was shotcreted to reduce the risk of piping of the dispersive core material.
The steep topography provided very limited sources of material suitable for a dam core. Potential contingency plans considered included bentonite enrichment of the low plasticity materials or a change to a concrete faced rockfill dam. The high cost of these options drove the decision to use the available residual soils from small gullies by selectively winning material with a higher fines content for use below full supply level. The lack of room on the ridge for stockpiling and conditioning of clays lead to trialling of a continuous mixer for mixing and conditioning the core which was found to be highly successful.
Filter materials were crushed sands and gravels produced from nearby commercial quarries. The materials and grading were generally high quality, with some challenges producing coarser filter materials by blending available aggregate products. A range of options were effectively adopted for placement of the filters including loader placement, trench boxes and spreading from a modified ejector dump truck.
Enlarged Cotter Dam Saddle Dams – Materials and Construction
Learn more