2010 – What Your Asset is Telling You – Testing and Analysis of Data
Dr Adam Butler, Robert Rigg, Glen Hobbs
The cost of maintenance is a serious problem. Preventive Maintenance is a good strategy if implemented well, but can led to unnecessary costs if items are replaced unnecessarily. Predictive maintenance can augment preventative maintenance by using real time instrumentation to monitor conditions. These techniques have been effective at recognizing the symptoms of impending machine failure
Glen Hobbs and Associates (GH&A) recently analysed pressure and displacement data from hydraulically actuated hoisting equipment of a large emergency closure fixed wheel gate. Data analysis enabled GH&A to pin-point causes of the gate malfunction. Anomalies in the data waveform corresponded to impacts and squeeze points in the system. Furthermore, comparing recent test data with older data highlighted gate deterioration over time.
Testing, analysis and trending of data enables asset managers to better predict the point at which maintenance really needs to be performed and shows that careful analysis of relevant data can help solve multi-faceted problems.
Keywords: Operations, Maintenance, Asset Management, Gates.
$15.00
Related products
-
$15.00
Papers 2010
2010 – Construction for Destruction: Downriver Diversion Dam Modifications Required for Matilija Dam Decommissioning
Learn moreAric Torreyson, Krey Price, Bob Hall
In a 2004 feasibility study, the U.S. Army Corps of Engineers (Corps) and Ventura County Watershed Protection District (VCWPD) recommended decommissioning Matilija Dam, a concrete arch dam originally constructed to a 60-metre height in 1948. A decade after its completion, the United States Bureau of Reclamation (USBR) constructed the Ventura River Project, comprising additional facilities designed to meet the growing water demand of Ventura County. Robles Diversion Dam, a 7-metre high by 160-metre long diversion structure located downstream of Matilija Dam, was built under the Ventura River Project to feed Lake Casitas, a water supply reservoir that serves as an integral part of the overall project.
Learn more
Due to extreme sedimentation, Matilija Dam no longer serves its intended water supply and flood control purposes. In addition to the loss of storage capacity, other issues surround the dam, including adverse environmental impacts from its continued operation, seismic considerations, and structural concerns. These concerns led to the decision to decommission the dam as an essential step in rehabilitating key ecosystems in the Ventura River Catchment and reducing future risks to public safety. According to current estimates, 5 million cubic metres of sediment has accumulated behind the dam and will need to be removed in conjunction with the dam decommissioning; minimising the associated downstream impacts has been the subject of additional government studies.
The USBR determined through detailed hydrologic, hydraulic, and sediment transport analyses, including numerical and physical modelling, that the existing Robles Diversion Dam was not capable of passing the increased sediment load expected to result from the removal of Matilija Dam. To increase the sediment transport capacity across its spillway, the existing diversion dam requires modification. Under contract with the Corps, Tetra Tech and its subcontractors are completing the design plans for the Robles Diversion Dam modifications.
This paper presents unique aspects of the Robles Diversion Dam modifications, including sediment management procedures guided by numerical and physical model results and issues associated with the design of a rock ramp spillway and high-flow fishway, expansion of the existing spillway gate structure, and raising of the dam embankment. The rehabilitation efforts reduce impacts to the migration of endangered fish species and allow for the eventual removal of Matilija Dam, which is the ultimate goal in the effort to balance engineered structures with a natural river setting. When completed, the project will provide fish passage to the upper catchment for the first time in over sixty years. -
$15.00
Papers 2010
2010 – A Unique and Holistic Approach to the Erodibility Assessment of Dam Foundations
Learn moreRichard Herweynen, Colleen Stratford
Assessing the potential for erosion of foundation rock downstream of a spillway is a problem faced on many dams, whether new or existing. The problem is made particularly difficult not only due to the uncertainty in determining the erosion potential of the rock, but also due to the variable hydrologic characteristics of flood events.
The selected spillway option for Wyaralong Dam comprises a centrally located primary spillway with a secondary spillway located on the left abutment. A stilling basin energy dissipater is provided at the toe of the primary spillway. Downstream of the secondary spillway, an apron channel will direct flows back to the stilling basin. However, for flood events larger than the 1 in 2000 AEP event, the capacity of the secondary spillway apron is exceeded and flows spill out across the left abutment of the dam towards the river channel. Erosion of this left abutment was viewed to be a potential dam safety issue, and as such, careful consideration was required during the design stage to determine the acceptability of this spillway arrangement.
In order to provide structure to a problem which often relies solely on engineering judgment, a decision process was developed, taking into consideration some of the more definable aspects of the problem. These aspects included the geological characteristics, the initial hydraulic characteristics, the flood duration, the nature of erosion should it occur and the stability of the dam. This paper describes the decision process and methodology used at Wyaralong Dam to
determine the acceptability of erosion. This paper will present the process in a way that it can be used by others in future dam projects, both new and upgrades.A Unique and Holistic Approach to the Erodibility Assessment of Dam Foundations
Learn more -
$15.00
Papers 2010
2010 – Assessment of flow-induced vibration in radial gates during extreme flood
Learn moreKaren Riddette, David Ho
Recent dam safety reviews of a number of Australian dams have identified that the arms of raised radial gates may be partially submerged by extreme flows which exceed the original design flood for the dam. Various design solutions have been proposed to secure and strengthen the radial gates, however an important concern is the potential for flow-induced vibration. Under extreme flood conditions, flows near the gate arms will be high-velocity, free-surface, with a steep angle of attack on the arm beams. Traditional hand calculations for computing vibrations are of limited applicability in this situation, and there is little published data available for this combination of flow conditions and arm geometry. A detailed study using CFD modelling of the potential for vibration around radial gate arms was carried out for Wyangala Dam. This paper presents the results of the validation and reveals some interesting flow patterns and vortex shedding behaviour.
Assessment of flow-induced vibration in radial gates during extreme flood
Learn more -
$15.00
Papers 2010
2010 – Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn moreTony Harman, Richard Herweynen, Malay Ghosh
Following a number of years of investigation into the condition of the existing 1960’s post tensioned anchors at Catagunya Dam Hydro Tasmania embarked on an options study to determine the best method to restore the dam stability to acceptable limits for the long term. The required solution was intended to not only resolve the issue of anchor deterioration but also to increase the flood capacity of the dam.
Based on preliminary design work a concrete buttress solution was recommended and approved for detailed design. The preliminary design utilised a simplified, 2-dimensional, rigid body model, including crack analysis. As part of the detailed design a finite element model was developed to refine the preliminary design. However, this model did not support the simplified analysis and further non-linear finite element analysis demonstrated that the proposed passive buttress design solution was not technically feasible. The options were reconsidered and the adopted solution was to replace the original anchors with new modern anchors with a high level of corrosion protection.
The new anchors adopted are the largest post tensioned anchor loading currently used for a dam in the world. This along with the existing post-tensioned anchors and the tight geometry of the dam, which has a central spillway with a cantilevered ogee crest, provided significant challenges with the design of this dam upgrade. Some of the key design challenges included:
– Appropriate level of modeling and analysis to be able to make sound design decisions. (Hydraulic modeling and FEA).
– Congestion due to the tight geometry of the original design.
– Anchor head block detail to ensure the loads would be adequately secured and dispersed into the dam body
– Crest cantilever support to ensure that structural integrity was retained during construction and later in service. Innovative installation of carbon fibre reinforcement was used.
– Strain compatibility. It was important to ensure the structural contribution of new and old working together and that the consequences of application of new large stresses was manageable.
– Existing anchor degradation. The design needed to ensure that stability compliance was achieved for complete to zero effectiveness over time.
– Maintaining operability of dam and power station during construction.
– Achieving an effective long term maintainable solution.This paper will present the risk associated with committing to a solution too early and the design challenges and the solutions finally developed, providing the dam industry with a valuable reference for future similar projects.
Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn more -
$15.00
Papers 2010
2010 – Response and failure prevention, following the identification of a major lining defect in the Tekapo Canal, New Zealand
Learn moreJim Walker, Sergio Vallesi, Neil Sutherland, Peter Amos, Tim Mills
The Tekapo Canal is a 26km long hydropower canal owned by Meridian Energy Ltd in New Zealand. Completed in 1976, the canal is 40m wide, 7m deep and has a capacity of 120m3/s. The canal was constructed from compacted local glacial soils with a compacted silt lining sourced from till deposits.
During 2007 and 2008 the canal showed signs of leakage where it crossed over a twin barrel culvert structure. In October 2008 a diver inspection identified depressions and sinkholes on the invert of the canal above the culvert. Approximately 6m3 of silty gravel lining material had settled. Testing showed direct and rapid connections between lining defects and seepage outflows at the culvert outlet headwall. Subsequent ground penetrating radar survey confirmed the presence of voids above the culvert barrels. Diver placed filling of the defects with granular materials was immediately implemented, and a series of remedial actions over the next four months were required to arrest deterioration and enable the canal to remain operational.
The paper describes the initial response to this situation and the immediate measures taken to prevent failure. It also describes the medium term and ongoing measures implemented to maintain the safety of the canal while permanent remediation requirements are assessed. The lessons learned from this event, and their impacts on Meridian’s Dam Safety Assurance Programme (DSAP) are also discussed.
Immediate response measures included ongoing filling of lining defects with filter gravel, intensive land based and diver surveillance of the canal, planning and resourcing for emergency contingency actions in the event that a risk of breach developed. Medium term measures included arresting leakage by placing a low permeability blanket of silty gravel over the damaged area using a concrete pump, and constructing external buttresses capable of safely withstanding large discharges should deterioration of the canal structure occur.
These short and medium term remedial measures were completed with the canal full and in operation and continue to perform well 20 months later. Continuing risk mitigation measures include enhanced surveillance and monitoring (land based and using divers), localised treatment of defects, as well as ongoing monitoring and review of the Dam Safety management regime and sustained Emergency Management preparedness.
Learn more