2010 – Water for Central Queensland – Connors River Dam and Pipeline Project
David Ryan, Sean Fleming
The Connors River Dam and Pipeline Project comprises the construction of a 367,540 ML storage on the Connors River located in central Queensland and a 130 km pipeline capable of delivering annually 49,500 ML of high priority water to the rapidly expanding Central Queensland Coalfields. The dam also has the capacity to supply water for the downstream agricultural sector.
Key outcomes of SunWater’s recent business case investigations included the identification of a strategy that would deliver the project in parallel with the construction programs currently being developed by the coal mining sector, the delivery of a quality product with high certainty cost and the ability to supply water at a commercially attractive rate. Construction activity is currently scheduled to commence in mid 2011, with commissioning of the works early 2014.
The paper outlines the project details, the design features of the dam and pipeline and the contract strategy adopted in an attempt to deliver the project on time and within budget.
Keywords: Roller Compacted Concrete, Early Contractor Involvement, Design and Construction.
$15.00
Related products
-
$15.00
Papers 2010
2010 – Assessment of flow-induced vibration in radial gates during extreme flood
Learn moreKaren Riddette, David Ho
Recent dam safety reviews of a number of Australian dams have identified that the arms of raised radial gates may be partially submerged by extreme flows which exceed the original design flood for the dam. Various design solutions have been proposed to secure and strengthen the radial gates, however an important concern is the potential for flow-induced vibration. Under extreme flood conditions, flows near the gate arms will be high-velocity, free-surface, with a steep angle of attack on the arm beams. Traditional hand calculations for computing vibrations are of limited applicability in this situation, and there is little published data available for this combination of flow conditions and arm geometry. A detailed study using CFD modelling of the potential for vibration around radial gate arms was carried out for Wyangala Dam. This paper presents the results of the validation and reveals some interesting flow patterns and vortex shedding behaviour.
Assessment of flow-induced vibration in radial gates during extreme flood
Learn more -
$15.00
Papers 2010
2010 – Seepage Detection within Embankment Dams using Infrared Thermal Imaging
Learn moreMonique de Moel, A/Professor Jayantha Kodikara, Dr Gamini Adikari
All embankment dams have some seepage as the impounded water seeks paths of least resistance through the dam and its foundation. Seepage must, however, be controlled to prevent internal erosion of the embankment or foundation and avoid damage to surrounding structures. Embankment dams are designed to operate under controlled steady state seepage, which over time may change due to movement in the foundation and the dam, chemical actions and other forms of deterioration. Effective monitoring of seepage within embankment dams is therefore essential in regards to management of dam safety and prevention of failure.
Traditional methods of seepage monitoring have involved measurement or visual monitoring on the downstream side of the dam after the seepage has occurred. Effective, early detection of seepage in embankment dams has been difficult as it originates and develops in the subsurface. Infrared Thermal Imaging is such a technique that is non-contact, non-intrusive, simple and flexible. The analysis draws on the temperature behaviour and the heat capacity of materials within the body of the dam and consequently allows the user to identify and isolate temperature variations along the surface of interest. This paper describes the method, application and feasibility of infrared thermal imaging for the detection of seepage in earth and rockfill embankment dams. The value of this technique as an additional tool in the surveillance of dams is discussed.
Infrared thermal imaging has been in use in other fields of engineering for condition monitoring and defect detection of structures. It has shown great potential in identifying variations in surface characteristics, which may not be evident through visual inspection alone. In this paper, reliability of this technique for seepage detection in embankment dams has been analysed using 8 case studies in order to arrive at a fair understanding of the best conditions under which Infrared Thermal Imaging field inspections should be carried out. The results of field investigations undertaken at these dams suggest that Infrared Thermal Imaging is a useful and effective tool for detection of seepage and an aid in identifying seepage behaviour.
Keywords: Seepage Detection, Infrared Thermal Imaging, Dam Surveillance, Monitoring
Learn more -
$15.00
Papers 2010
2010 – A risk-based re-evaluation of reservoir operating restrictions to reduce the risk of failure from earthquake and piping
Learn moreDavid S. Bowles, Loren R. Anderson, Michael E. Ruthford, David C. Serafini, Sanjay S. Chauhan, Utah State University, Logan, Utah, U.S. Army Corps of Engineers, Sacramento, CA
In 2005 the Sacramento District of the US Army Corps of Engineers implemented an operating restriction to reduce the risk of an earthquake-induced failure of Success Dam, which could cause significant life loss and property damage. This paper describes an update of the 2004 risk-based evaluation of operating restrictions for Lake Success, which incorporated new information obtained by the District and enabled a re-evaluation of the level of the operating restriction and provided a basis for a possible modification of the restriction.
Learn more -
$15.00
Papers 2010
2010 – Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn moreTony Harman, Richard Herweynen, Malay Ghosh
Following a number of years of investigation into the condition of the existing 1960’s post tensioned anchors at Catagunya Dam Hydro Tasmania embarked on an options study to determine the best method to restore the dam stability to acceptable limits for the long term. The required solution was intended to not only resolve the issue of anchor deterioration but also to increase the flood capacity of the dam.
Based on preliminary design work a concrete buttress solution was recommended and approved for detailed design. The preliminary design utilised a simplified, 2-dimensional, rigid body model, including crack analysis. As part of the detailed design a finite element model was developed to refine the preliminary design. However, this model did not support the simplified analysis and further non-linear finite element analysis demonstrated that the proposed passive buttress design solution was not technically feasible. The options were reconsidered and the adopted solution was to replace the original anchors with new modern anchors with a high level of corrosion protection.
The new anchors adopted are the largest post tensioned anchor loading currently used for a dam in the world. This along with the existing post-tensioned anchors and the tight geometry of the dam, which has a central spillway with a cantilevered ogee crest, provided significant challenges with the design of this dam upgrade. Some of the key design challenges included:
– Appropriate level of modeling and analysis to be able to make sound design decisions. (Hydraulic modeling and FEA).
– Congestion due to the tight geometry of the original design.
– Anchor head block detail to ensure the loads would be adequately secured and dispersed into the dam body
– Crest cantilever support to ensure that structural integrity was retained during construction and later in service. Innovative installation of carbon fibre reinforcement was used.
– Strain compatibility. It was important to ensure the structural contribution of new and old working together and that the consequences of application of new large stresses was manageable.
– Existing anchor degradation. The design needed to ensure that stability compliance was achieved for complete to zero effectiveness over time.
– Maintaining operability of dam and power station during construction.
– Achieving an effective long term maintainable solution.This paper will present the risk associated with committing to a solution too early and the design challenges and the solutions finally developed, providing the dam industry with a valuable reference for future similar projects.
Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn more -
$15.00
Papers 2010
2010 – Pukaki Canal Intake structure repairs – November 2009 – 62 hours on the slab
Learn moreJim Walker, Jamie Macgregor
The Pukaki Canal Inlet structure is a large gated culvert and stilling basin structure, it is a High PIC appurtenant structure to the Pukaki Dam, located in the Mackenzie Basin area of New Zealand’s South Island.
The 560m3/s capacity inlet structure is founded on glacial moraines. It controls flow from the178 km2 Lake Pukaki storage into the 80m wide, 22km long Pukaki/Ohau canal. It is the owner’s (Meridian Energy) most important valve, as it feeds 1550MW of hydro generation on the Waitaki River.
A risk assessment in late 2009 identified a previously unrecognised trigger for a potential failure mode for the stilling basin. Principally, ongoing erosion of the reinforced concrete base slab could lead to failure of water stops in the slab joints potentially leading to slab uplift, foundation erosion, and ultimately, catastrophic failure of the Pukaki Dam. To better define the risk to the structure, further inspection of the stilling basin was recommended.
A dewatered inspection of the stilling basin was required, as further dive inspections would not improve our understanding of structure condition. Because the stilling basin cannot be isolated from the canal, this requires dewatering the entire Pukaki/Ohau canal, presenting significant risks of damage to the canals from slumping and lining failure. A dewatered outage also has major business revenue impacts.
This paper describes how Meridian were able to take advantage of a transmission network outage, scheduled for just six days after the risk was identified, to plan, safely dewater, inspect, and rewater 22km of hydro canal, and not just to inspect the Pukaki Canal Inlet structure, but also to implement repairs to the stilling basin slab which have successfully mitigated the structure safety and operational risks. This huge undertaking involved mobilising an army of people, plant and materials, and cost over NZ$1.8m. From identifying the risk to the structure, to completing repairs took just 13 (very busy) days.
Lessons learned in the areas of dam safety and asset management are presented. As well as those contributing to the success of the project in seizing an opportunity to mitigate the identified dam safety and operational risks.
Learn more