2010 – The applications of expert rule systems in decision-making
Shao Kwan Ng
Asset management aims to ensure that assets, such as dams, are sustainable. In order to achieve this, management decisions need to be defensible and the long-term impacts of short-term decisions need to be clearly demonstrated, such that an asset operates and is maintained in an appropriate fashion and in a satisfactory condition. Expert rule systems are becoming widely recognised as powerful and elegant tools suitable for engineering and management decision-making. They are powerful, transparent and flexible tools that mimic how people make decisions, and hence provide a natural way of thinking for decision-making. This paper reviews the current usage of expert systems in asset management, and illustrates the potential of these tools, in conjunction with the available (ANCOLD) guidelines, to assist dam owners in decision-making, such as in condition evaluation and dam hazard assessment applications.
Keywords: Decision-making, expert rule systems.
$15.00
Related products
-
$15.00
Papers 2010
2010 – Challenges Associated with Identifying and Analysing Potential Failure Mechanisms in Dam Foundations – Taum Sauk Upper Reservoir Dam & Wyaralong Dam Case Studies
Learn moreJared Deible, Richard Herweynen, Gary Dow
The foundation is an important element in the stability of any dam. Understanding the foundation and the potential failure mechanisms associated with the dam foundation is critical to developing the final dam design. This paper will discuss the challenges encountered with the foundation at the Taum Sauk Upper Reservoir Dam and the Wyaralong Dam.
Learn more
The Upper Reservoir of the Taum Sauk project is a 2.3 million cubic metre roller compacted concrete (RCC) dam located near Ironton, Missouri, USA. The RCC dam was constructed in accordance with United States Federal Energy Regulatory Commission (FERC) guidelines to replace a rockfill dike that failed abruptly on December 14, 2005. Wyaralong Dam is a new RCC dam, for water supply, located on the Teviot Brook near the township of Beaudesert in south-east Queensland.
Wyaralong and Taum Sauk each had challenges associated with identifying potential failure mechanisms in the foundation and with analysing the stability of the dam for these potential failure mechanisms. The geology at the projects was very different, but challenges for each project were quantifying the amount of reliance that was placed on the rock mass at the toe of the dam, developing the shear strength parameters, and developing the associated failure mechanisms that would be analysed.
The design of Wyaralong and the rebuilt Taum Sauk Upper Reservoir, including the geometry of the dam sections, were developed based on the foundation features at each project. Foundation treatments and excavation designs were developed based on the stability analyses conducted during the design phase. These foundation treatments included removal of weak layers or defects where necessary, but features were left in place in the foundation at selected locations at each project. Where features were left in place, stability analyses concluded the dam was stable. The stability analyses at each project considered three dimensional effects along features in the foundation where appropriate.
As the foundation was uncovered during the construction phase of each project, the parameters used in the stability analysis conducted during the design phase were confirmed or adjusted. The excavation and foundation preparation activities were adjusted as necessary based on actual conditions during the construction phase. -
$15.00
Papers 2010
2010 – Challenges in dam design on lateritic soils
Learn moreJiri Herza, Nihal Vitharana, Alex Gower
The Western Australia Water Corporation plans to increase the storage capacity of Millstream Dam, which is located near Bridgetown in the south west region of WA. The existing dam is an 18 m high zoned earthfill embankment constructed in 1962. The dam suffered a block heave of the foundation at the downstream toe during the first filling, probably attributable to high foundation pore water pressures. The dam upgrade will be challenging due to complex and unfavourable foundation soils coupled with these artesian pressures.
The dam is founded on lateritic soil, which is a common weathering profile throughout the region. These soils formed in a tropical environment of fluctuating water tables, severe leaching and translocation of iron oxides over many millions of years. As a consequence some of the lateritic horizons at Millstream Dam have been modified such that they exhibit behaviours that are not consistent with conventional constitutive models and correlations. These are attributed to a complex structure of the soil microfabric, which comprises clay particles bonded together into larger aggregates. The clayey aggregates are also bonded to each other, forming a porous matrix of silty or sandy appearance characterized by low dry density and high void ratio, which may nevertheless disintegrate on working.
Comprehensive geotechnical investigations and extensive laboratory testing have revealed that the foundation materials display characteristics of clayey and granular soils. Under shearing, these soils demonstrate high initial strength, which gradually reduces as the inter-aggregate bonds are broken and the relative position of the aggregates changes. Several soil samples also exhibited significant contractive behaviour on shearing generating high pore pressures under undrained conditions.
This paper presents the investigation and design methods used in the foundation design of the Millstream Dam upgrade with emphasis on unusual behaviour of the foundation media.Challenges in dam design on lateritic soils
Learn more -
$15.00
Papers 2010
2010 – Using a clay cemented sandstone as RCC aggregate – a major breakthrough at Wyaralong Dam
Learn moreRichard Herweynen, Robert Montalvo, John Ager
The choice of materials used in the construction of a dam is one of the most critical decisions in the design process. Our natural behaviour as engineers is to adopt materials which have proven performance, and which conform to Australian or international standards, which sometimes causes us to overlook the specific conditions and demands of the project at hand. In an environment where the majority of concrete produced is for structural purposes, the properties of these concretes is often vastly different to those desired for mass concrete structures such as dams and spillways.
The big question at Wyaralong Dam was could onsite aggregate be used in the Roller Compacted Concrete (RCC)? The Wyaralong Dam is located in the Gatton Sandstone (early Jurassic), predominantly feldspathic to lithic‐feldspathic sandstones with a clay matrix. Early analyses and tests suggested that the Gatton Sandstone was not suitable for RCC aggregate due to a 68% wet/dry strength reduction, high water absorption (5.2 – 7.5%) and petrographic interpretation that clay content was mainly swelling clay, leading to durability concerns.
Due to significant community, safety and cost issues with importing aggregate, Wyaralong Dam Alliance (WDA), during the development of the RCC mix design for Wyaralong Dam, chose to pursue the use of onsite quarried sandstone aggregate instead of importing aggregate. Additional petrographic and XRD analyses and extensive durability tests were undertaken on cores of sandstone and RCC samples, including wet‐dry cycles, soak tests in ethylene glycol, soaks in sodium hydroxide, and heating and cooling cycles. These tests indicated that, if swelling clays are present, they do not impact the durability behavior of the RCC aggregate.
The substantial effort put into testing the sandstone aggregate has paid off for WDA. Not only have the results indicated that the RCC mix performs remarkably well in terms of durability, but the very low modulus of elasticity of the mix has provided exceptional performance in terms of thermal loading; with all the related benefits in reduced restrictions to placement schedule and cooling requirements. Onsite sandstone was not only proven to be a feasible option, it has been demonstrated that it is the best option for the project. Details of the study are provided in this paper.
Keywords: Roller Compacted Concrete (RCC), Sandstone, Aggregate, Clay, Mix, Durability
Learn more -
$15.00
Papers 2010
2010 – How to build a dam – just ask the community?
Learn moreCat McConkey, Zarmina Nasir, Rachel Caoil
The Enlarged Cotter Dam (ECD) is the first major project to be assessed and approved under the new planning regime in the Australian Capital Territory (ACT). ACTEW chose the ECD as its highest priority option in securing Canberra’s water supply for the future because of its relative economic benefit to the community, reliability of water supply, technical feasibility and comparatively low environmental impact.
Learn more
The planning and construction of large dams has been reduced from a typical 10 plus years to four years in the ACT and surrounds for the ECD. Australian and International Dam design and construction has significantly developed from a time when dam approvals focused on engineering, economics and constructability to now include regulatory planning processes that seek to reconcile environmental, social and economic impacts.
This paper explores and contrasts the experience of securing approvals for the ECD in 2009 to past experiences of dam planning approvals and consultation processes. -
$15.00
Papers 2010
2010 – Innovations in resolving construction challenges on the Catagunya Dam Restoration Project
Learn moreCubit T, Swindon A, Tanner D
Catagunya Dam is located on the Derwent River in Tasmania’s south east. During construction of the dam in early 1960’s 412 post-tensioned anchors were installed, however the integrity of the original anchors can no longer be assured. The stability of the dam was restored between 2008 and 2010 using 92 modern, large diameter, load monitorable and corrosion protected post-tensioned anchors. These are the most highly stressed anchors applied to a dam at this time.
Learn more
Some of the key construction challenges included installing 53 anchors within an operating spillway, utilising a very limited construction window and replacing severed surface reinforcement using carbon fibre rods.
This paper details how these challenges were resolved and presents a number of innovative solutions developed along the way.