2010 – Overview of Recent Dam Safety Activity on the Waikato Hydro System
Justin Howes, Peter Amos
For many years Mighty River Power has operated an intensive Dam Safety Assurance Programme with respect to our nine large hydro assets, a unique run of river cascade system built between 1927 and 1972. From 2001 to 2007 the Arapuni Foundation Enhancement Project was a high profile activity, but there has also been much dam safety analysis and minor mitigation work that could be classified as “Business As Usual Dam Safety Activity” – this paper seeks to give a high level overview of the work carried out from 2000 to 2010. Items covered include; an overview of the hydraulic structures, their hydrological and geological setting, and the current dam safety regime. Examples of typical issues identified by the Programme are given on a structure by structure basis along the river. Seismic, Flooding, Emergency Planning, Documentation, Monitoring, Control, Electrical and Mechanical type issues are covered.
$15.00
Now showing 1-12 of 41 2974:
Related products
-
$15.00
2010 Papers
2010 – How to build a dam – just ask the community?
Learn moreCat McConkey, Zarmina Nasir, Rachel Caoil
The Enlarged Cotter Dam (ECD) is the first major project to be assessed and approved under the new planning regime in the Australian Capital Territory (ACT). ACTEW chose the ECD as its highest priority option in securing Canberra’s water supply for the future because of its relative economic benefit to the community, reliability of water supply, technical feasibility and comparatively low environmental impact.
Learn more
The planning and construction of large dams has been reduced from a typical 10 plus years to four years in the ACT and surrounds for the ECD. Australian and International Dam design and construction has significantly developed from a time when dam approvals focused on engineering, economics and constructability to now include regulatory planning processes that seek to reconcile environmental, social and economic impacts.
This paper explores and contrasts the experience of securing approvals for the ECD in 2009 to past experiences of dam planning approvals and consultation processes. -
$15.00
2010 Papers
2010 – TOWARDS UNDERSTANDING A KARST FOUNDATION: USE OF A THREE DIMENSIONAL FOUNDATION MODEL AT DARWIN DAM
Learn moreBrendan Sheehan, Chris Topham, Alan White, Rowenna Lagden
Darwin Dam is a 21m high embankment dam constructed on a geologically complex foundation that includes karst limestone features. The dam retains the top 15m of Lake Burbury on Tasmania’s west coast, and borders the Tasmanian Wilderness World Heritage Area. Defensive design of the dam addressed the key failure modes of piping through the complex foundations of limestone, sandstone, gravels and silts, and guarding against sinkholes forming in the limestone foundations. During construction, a comprehensive range of instruments were installed in the dam and foundation, as a long term means of monitoring this structure. A range of surveillance data has been collected since lake filling and this data, along with historic geological investigation information, was used to develop a three dimensional (3D) geological model of the dam and
foundation with phreatic profiles. The software used was a commercially available geographical information system. This tool has assisted Hydro Tasmania to better understand and manage the dam. The paper outlines the need for a 3D model, the methodology for development of the model, resources required, limitations and lessons learned. The benefits of the model, such as aiding understanding of foundation behaviour, assisting with interpretation of surveillance data, supporting decision making, and potential use during incident response are also discussed.Keywords: Three dimensional, computer model, karst foundation, geology, hydrogeology ,dam surveillance
Learn more -
$15.00
2010 Papers
2010 – Application of Available Climate Science to Assess the Impact of Climate Change on Spillway Adequacy
Learn moreKeirnan Fowler, Peter Hill, Phillip Jordan, Rory Nathan, Kristen Sih
Although there are considerable uncertainties in the science of climate change, there is a growing recognition of the importance of the issue. Incorporation of climate change impacts is now required in policy guidance from several government authorities and it is prudent risk management to consider the effects of climate change in planning for water resource infrastructure, including assessment and design of dam upgrades. This paper describes the potential impact of climate change on extreme flood estimates and provides a case study for Dartmouth Dam in south-eastern Australia. Three inputs to flood estimation were considered according to the projected impact of climate change; namely design rainfalls, modelled losses and initial reservoir level. The relative influence of each of these factors is explored. Rainfall and losses had a similar (and opposite) influence on results and for this dam the reservoir level prior to the flood event had the largest influence on results. This case study demonstrates that the insights of climate modellers and hydrologists need to be integrated in order to provide defensible estimates of the impact of climate change in flood hydrology studies. Credible projections of changes in design rainfall intensities are required for the full range of exceedance probabilities across Australia.
Application of Available Climate Science to Assess the Impact of Climate Change on Spillway Adequacy
Learn more -
$15.00
2010 Papers
2010 – Bowen River Weir Fishway – Design and Construction
Learn moreDavid Scriven, Errol Beitz, Aaron Elphinstone
The Bowen River Weir is located at AMTD 94.4 km on the Bowen River, some 25 km south of Collinsville in North Queensland. The weir is part of the Bowen/Broken Rivers Water Supply Scheme and it provides a pumping pool for pipelines serving two nearby coal mining developments and a power station, and also acts as a regulator for riparian water users downstream until it meets the Burdekin River.
The weir was constructed in 1982 and incorporated a fishway towards the southern (left) bank, the design of which was based on the old “pool and weir” fish ladder type layout, typical of that era, with 48 separate cells containing partial vertical slots and baffles. This design has since been found to be ineffective for Australian native fish. In addition it was often out of service due to cells becoming filled with river sediment and debris. For these reasons it was decommissioned and made safe in late 2008 on the condition that a new fishway be constructed.
In late 2008 agreement was reached with Fisheries Queensland to install a “fish lock” type fishway at the site. This type of fishway has in recent years proved to be reliable and effective (eg. successful fish locks at Neville Hewitt and Claude Wharton Weirs). The preliminary and then final design was undertaken by SunWater (Infrastructure Development) between September 2008 and March 2009. The construction was undertaken by SunWater direct management, commencing in July 2009 and completed in late 2010.Bowen River Weir Fishway – Design and Construction
Learn more -
$15.00
2010 Papers
2010 – Lessons from the failure of the Massingir Dam outlet conduit
Learn morePeter A Ballantine, Christopher V Seddon
Massingir Dam, constructed in the late 1970’s on the Olifants River in Mozambique, is a 48 m high zoned earthfill dam. Due to various safety concerns, the dam was operated at a reduced full supply level of 110 masl, compared to the design full supply level of 125 masl. Between 2004 and 2006 remedial works were undertaken, including the construction of a berm on the downstream face of the dam, grouting and drainage of the foundations and installation of the spillway crest gates. From December 2005 the storage level of the dam was allowed to increase.
Learn more
On 22 May 2008, with the reservoir storage level at 122.43 masl and the gates on the outlet conduits closed, the reinforced concrete conduits failed at the downstream end, releasing an estimated 1,000 m3 /s of water into the Olifants River.
A 2-D finite element analysis was undertaken in order to establish the safe load bearing capacity of the as-constructed conduits. On the basis of the analysis, it was concluded that the original design did not take proper account of the pressure that would develop within the thick concrete sections of the conduit. In view of assumptions regarding the load paths, the reinforcement was not placed in the most appropriate positions.
This paper describes the events leading up to the failure of the conduit, presents the findings of the investigation into the failure and makes recommendations on the basis of the findings.