2010 – Mildura Weir Denil Fishway An Innovative Fish Passage Solution for a Unique Site
Steven Slarke, Martin Mallen-Cooper, Andrew Evans, John Prentice
As part of the Murray-Darling Basin Authority ‘Sea to Hume Dam’ program to restore fish passage along the River Murray, an innovative Denil fishway is being retrofitted into Mildura Weir (Lock 11). Due for completion in the latter half of 2010, the fishway will allow the upstream and downstream passage of medium and large sized fish past Mildura Weir, which has a difference in water levels of 3.5 metres.
Constructed on the sloped concrete apron at the left abutment of the Dethridge weir, the Mildura Weir Denil fishway design is innovative in the River Murray. The Denil fishway is essentially separate from the existing weir, and its superstructure can be fully removed from the river during floods. The fishway can also be progressively removed during periods of rising floodwaters, maintaining operation during periods when fish migrate in particularly large numbers. The fishway represents a cost effective design, reflecting the decision to maintain the current weir structure for a further forty years, but still providing passage to a broad range of fish sizes and species. Innovative fish monitoring and carp separation facilities will be provided, shared with the other River Murray fishways. But, unique to the River Murray, viewing windows are provided to allow the public to observe fish negotiating the fishway, and to enable a better understanding of fish movement.
$15.00
Related products
-
$15.00
Papers 2010
2010 – Water for Central Queensland – Connors River Dam and Pipeline Project
Learn moreDavid Ryan, Sean Fleming
The Connors River Dam and Pipeline Project comprises the construction of a 367,540 ML storage on the Connors River located in central Queensland and a 130 km pipeline capable of delivering annually 49,500 ML of high priority water to the rapidly expanding Central Queensland Coalfields. The dam also has the capacity to supply water for the downstream agricultural sector.
Key outcomes of SunWater’s recent business case investigations included the identification of a strategy that would deliver the project in parallel with the construction programs currently being developed by the coal mining sector, the delivery of a quality product with high certainty cost and the ability to supply water at a commercially attractive rate. Construction activity is currently scheduled to commence in mid 2011, with commissioning of the works early 2014.
The paper outlines the project details, the design features of the dam and pipeline and the contract strategy adopted in an attempt to deliver the project on time and within budget.
Keywords: Roller Compacted Concrete, Early Contractor Involvement, Design and Construction.
Learn more -
$15.00
Papers 2010
2010 – Assessment of flow-induced vibration in radial gates during extreme flood
Learn moreKaren Riddette, David Ho
Recent dam safety reviews of a number of Australian dams have identified that the arms of raised radial gates may be partially submerged by extreme flows which exceed the original design flood for the dam. Various design solutions have been proposed to secure and strengthen the radial gates, however an important concern is the potential for flow-induced vibration. Under extreme flood conditions, flows near the gate arms will be high-velocity, free-surface, with a steep angle of attack on the arm beams. Traditional hand calculations for computing vibrations are of limited applicability in this situation, and there is little published data available for this combination of flow conditions and arm geometry. A detailed study using CFD modelling of the potential for vibration around radial gate arms was carried out for Wyangala Dam. This paper presents the results of the validation and reveals some interesting flow patterns and vortex shedding behaviour.
Assessment of flow-induced vibration in radial gates during extreme flood
Learn more -
$15.00
Papers 2010
2010 – Googong Dam Spillway Upgrade – Construction Challenges and Alliance Framework
Learn moreBen Greentree, David Bamforth, Matthew O’Rourke and James Willey
A series of relatively small floods occurring between end of construction in 1978 and late 1980s caused extensive and dramatic rock erosion to the very steep unlined section of the Googong Dam spillway. Following a review of hydraulic performance at larger floods, the spillway’s future erosion potential was evaluated and it became clear that extensive remedial work was required. A detailed design was developed comprising the retro-fitting of a full concrete-lined chute, the raising and extension of the spillway chute walls, strengthening of the upstream training walls and excavation of a large plunge pool. The Googong Dam has an ANCOLD hazard rating of ‘extreme’ because of its location upstream of Queanbeyan and Canberra.
Learn more
In early 2008, the Bulk Water Alliance (BWA), comprising ACTEW Corporation Ltd, (in cooperation with ActewAGL) (the Owner), GHD Pty Ltd (the Designer) and Abigroup Contractors Pty Ltd in joint venture with John Holland Pty Ltd (the Constructors) was formed to deliver a package of water security projects for the ACT, one of which is the Googong Dam Spillway Upgrade.
After preparation of a construction methodology and target outturn cost (TOC), the project was approved by the Actew Board and construction commenced in February 2009. Completion is due in late 2010. A number of significant geotechnical, structural and logistical challenges were encountered during construction, resulting in major changes to the construction methodology necessitating design changes. The changes were incorporated within the original TOC, without instigating scope change contractual claims and while still maintaining spillway functionality in line with Owner operational requirements.
This paper presents delivery phase challenges that necessitated construction methodology and design changes to achieve best for project outcomes; how these challenges were overcome through genuine innovation reliant on a collaborative effort by all the Alliance partners; and how the contractual framework of the Alliance was essential for the change management process to be successful. -
$15.00
Papers 2010
2010 – Hidden Valley – Design and Construction of Highland Papua New Guinea First Tailings Dams
Learn moreRick Friedel, Len Murray, Gerrad Suter, James Penman, James Watt, Hendra Jitno
The Hidden Valley tailings storage facility (TSF) has set a new precedent in environmental management of tailings in Papua New Guinea (PNG). Modern mining in PNG arguably began with the development of Bougainville Copper in the late 1960s, and continued through to Ok Tedi, Porgera, Lihir, Misima (and others). These mines have proceeded with deep sea or riverine tailings deposition, rather than construction of a tailings dam to retain the mine waste within an impoundment; as is the practice throughout the majority of the mining industry.
Learn more
The Hidden Valley TSF is comprised of two large earth and rock fill dams, raised by the downstream method. Starter dam construction was completed in 2009. At final height the Main Dam will be one of the highest tailings dams in the world. The dams are constructed of pit waste and therefore have the dual function of storing tailings and waste rock.
Construction of the starter dams and subsequent raises is complicated by conditions at the site. Water management was, and remains, the dominant issue. High rainfall, weak erosive soils, material availability, dense vegetation and remoteness of the site provide constant challenges to construction. The Observational Approach to construction was recommended by the designers and adopted by the mine operator. This involves a knowledgeable pre-assessment of what is likely to change and having contingency plans to deal with possible major issues. This approach allows changes to the design during construction so the “as-built” product is suited for the site, fit for purpose, and remains consistent with the overall intent of the design.
The TSF has been in operation since August 2009 and monitoring data of the structures has been collected during construction and operation. This data is reviewed to confirm design assumptions and assess dam performance.
Personnel involved with this project combined their experiences working in the PNG environment and dam building from other locations. This process led to close interaction between the mine operators, designers and construction teams. Team work and diligent construction practices were and will continue to be necessary to construct and operate the pioneering TSF in PNG. -
$15.00
Papers 2010
2010 – Construction for Destruction: Downriver Diversion Dam Modifications Required for Matilija Dam Decommissioning
Learn moreAric Torreyson, Krey Price, Bob Hall
In a 2004 feasibility study, the U.S. Army Corps of Engineers (Corps) and Ventura County Watershed Protection District (VCWPD) recommended decommissioning Matilija Dam, a concrete arch dam originally constructed to a 60-metre height in 1948. A decade after its completion, the United States Bureau of Reclamation (USBR) constructed the Ventura River Project, comprising additional facilities designed to meet the growing water demand of Ventura County. Robles Diversion Dam, a 7-metre high by 160-metre long diversion structure located downstream of Matilija Dam, was built under the Ventura River Project to feed Lake Casitas, a water supply reservoir that serves as an integral part of the overall project.
Learn more
Due to extreme sedimentation, Matilija Dam no longer serves its intended water supply and flood control purposes. In addition to the loss of storage capacity, other issues surround the dam, including adverse environmental impacts from its continued operation, seismic considerations, and structural concerns. These concerns led to the decision to decommission the dam as an essential step in rehabilitating key ecosystems in the Ventura River Catchment and reducing future risks to public safety. According to current estimates, 5 million cubic metres of sediment has accumulated behind the dam and will need to be removed in conjunction with the dam decommissioning; minimising the associated downstream impacts has been the subject of additional government studies.
The USBR determined through detailed hydrologic, hydraulic, and sediment transport analyses, including numerical and physical modelling, that the existing Robles Diversion Dam was not capable of passing the increased sediment load expected to result from the removal of Matilija Dam. To increase the sediment transport capacity across its spillway, the existing diversion dam requires modification. Under contract with the Corps, Tetra Tech and its subcontractors are completing the design plans for the Robles Diversion Dam modifications.
This paper presents unique aspects of the Robles Diversion Dam modifications, including sediment management procedures guided by numerical and physical model results and issues associated with the design of a rock ramp spillway and high-flow fishway, expansion of the existing spillway gate structure, and raising of the dam embankment. The rehabilitation efforts reduce impacts to the migration of endangered fish species and allow for the eventual removal of Matilija Dam, which is the ultimate goal in the effort to balance engineered structures with a natural river setting. When completed, the project will provide fish passage to the upper catchment for the first time in over sixty years.