2010 – Hinze Dam: numerical modelling prediction versus performance
Gavan Hunter and James Toose
Hinze Dam, located on the Gold Coast in Queensland, is an Extreme hazard storage under the authority of Seqwater (Southeast Queensland). The Stage 3 works, which are coming to completion, require raising the existing 65 m high central core earth and rockfill embankment almost 15 m to a maximum height of 80 m. The reservoir has been near full supply level for the construction period.
Numerical modelling and empirical predictive methods were used to estimate the deformation at three key embankment sections during construction; the right abutment of the main embankment, the maximum section and the main to saddle embankment connection. The results of the analysis were incorporated into the dam safety management plan to provide a framework for evaluation of the monitored deformation during construction.
This paper summarises the numerical modelling and outlines the framework of the dam safety management plan. It then compares the actual deformation measured during construction against the predictions. Overall, the modelled deformation has compared very well in terms of trend and reasonably well in terms of magnitude with the actual deformation to date. On one occasion the deformation has exceeded the estimates and triggered a response to elevate the review to higher levels within the Alliance. Concluding comments are provided on the useful aspects and limitations of the numerical modelling at Hinze Dam.
$15.00
Now showing 1-12 of 41 2974:
Related products
-
$15.00
2010 Papers
2010 – U.S. Army Corps of Engineers Dam Safety and Asset Management of Mechanical /Electrical Systems for Dams
Learn moreRick W. Schultz P.E.
The Corps of Engineers Risk Management Center is undergoing a nationwide assessment of its navigation and flood control projects. Development of the methodology and tools used to determine probability of failure of mechanical and electrical systems for dams is being presented in this document. Development of the Weibull formulas for specific use in dam will be addressed along with use of fault tree analysis to determine system reliability.
Keywords: Dormant-Weibull Formula, Fault Tree, Characteristic Life of Components, Beta Shape Parameters, Inspection intervals.
Learn more -
$15.00
2010 Papers
2010 – Response and failure prevention, following the identification of a major lining defect in the Tekapo Canal, New Zealand
Learn moreJim Walker, Sergio Vallesi, Neil Sutherland, Peter Amos, Tim Mills
The Tekapo Canal is a 26km long hydropower canal owned by Meridian Energy Ltd in New Zealand. Completed in 1976, the canal is 40m wide, 7m deep and has a capacity of 120m3/s. The canal was constructed from compacted local glacial soils with a compacted silt lining sourced from till deposits.
During 2007 and 2008 the canal showed signs of leakage where it crossed over a twin barrel culvert structure. In October 2008 a diver inspection identified depressions and sinkholes on the invert of the canal above the culvert. Approximately 6m3 of silty gravel lining material had settled. Testing showed direct and rapid connections between lining defects and seepage outflows at the culvert outlet headwall. Subsequent ground penetrating radar survey confirmed the presence of voids above the culvert barrels. Diver placed filling of the defects with granular materials was immediately implemented, and a series of remedial actions over the next four months were required to arrest deterioration and enable the canal to remain operational.
The paper describes the initial response to this situation and the immediate measures taken to prevent failure. It also describes the medium term and ongoing measures implemented to maintain the safety of the canal while permanent remediation requirements are assessed. The lessons learned from this event, and their impacts on Meridian’s Dam Safety Assurance Programme (DSAP) are also discussed.
Immediate response measures included ongoing filling of lining defects with filter gravel, intensive land based and diver surveillance of the canal, planning and resourcing for emergency contingency actions in the event that a risk of breach developed. Medium term measures included arresting leakage by placing a low permeability blanket of silty gravel over the damaged area using a concrete pump, and constructing external buttresses capable of safely withstanding large discharges should deterioration of the canal structure occur.
These short and medium term remedial measures were completed with the canal full and in operation and continue to perform well 20 months later. Continuing risk mitigation measures include enhanced surveillance and monitoring (land based and using divers), localised treatment of defects, as well as ongoing monitoring and review of the Dam Safety management regime and sustained Emergency Management preparedness.
Learn more -
$15.00
2010 Papers
2010 – Mildura Weir Denil Fishway An Innovative Fish Passage Solution for a Unique Site
Learn moreSteven Slarke, Martin Mallen-Cooper, Andrew Evans, John Prentice
As part of the Murray-Darling Basin Authority ‘Sea to Hume Dam’ program to restore fish passage along the River Murray, an innovative Denil fishway is being retrofitted into Mildura Weir (Lock 11). Due for completion in the latter half of 2010, the fishway will allow the upstream and downstream passage of medium and large sized fish past Mildura Weir, which has a difference in water levels of 3.5 metres.
Learn more
Constructed on the sloped concrete apron at the left abutment of the Dethridge weir, the Mildura Weir Denil fishway design is innovative in the River Murray. The Denil fishway is essentially separate from the existing weir, and its superstructure can be fully removed from the river during floods. The fishway can also be progressively removed during periods of rising floodwaters, maintaining operation during periods when fish migrate in particularly large numbers. The fishway represents a cost effective design, reflecting the decision to maintain the current weir structure for a further forty years, but still providing passage to a broad range of fish sizes and species. Innovative fish monitoring and carp separation facilities will be provided, shared with the other River Murray fishways. But, unique to the River Murray, viewing windows are provided to allow the public to observe fish negotiating the fishway, and to enable a better understanding of fish movement. -
$15.00
2010 Papers
2010 – Pukaki Canal Intake structure repairs – November 2009 – 62 hours on the slab
Learn moreJim Walker, Jamie Macgregor
The Pukaki Canal Inlet structure is a large gated culvert and stilling basin structure, it is a High PIC appurtenant structure to the Pukaki Dam, located in the Mackenzie Basin area of New Zealand’s South Island.
The 560m3/s capacity inlet structure is founded on glacial moraines. It controls flow from the178 km2 Lake Pukaki storage into the 80m wide, 22km long Pukaki/Ohau canal. It is the owner’s (Meridian Energy) most important valve, as it feeds 1550MW of hydro generation on the Waitaki River.
A risk assessment in late 2009 identified a previously unrecognised trigger for a potential failure mode for the stilling basin. Principally, ongoing erosion of the reinforced concrete base slab could lead to failure of water stops in the slab joints potentially leading to slab uplift, foundation erosion, and ultimately, catastrophic failure of the Pukaki Dam. To better define the risk to the structure, further inspection of the stilling basin was recommended.
A dewatered inspection of the stilling basin was required, as further dive inspections would not improve our understanding of structure condition. Because the stilling basin cannot be isolated from the canal, this requires dewatering the entire Pukaki/Ohau canal, presenting significant risks of damage to the canals from slumping and lining failure. A dewatered outage also has major business revenue impacts.
This paper describes how Meridian were able to take advantage of a transmission network outage, scheduled for just six days after the risk was identified, to plan, safely dewater, inspect, and rewater 22km of hydro canal, and not just to inspect the Pukaki Canal Inlet structure, but also to implement repairs to the stilling basin slab which have successfully mitigated the structure safety and operational risks. This huge undertaking involved mobilising an army of people, plant and materials, and cost over NZ$1.8m. From identifying the risk to the structure, to completing repairs took just 13 (very busy) days.
Lessons learned in the areas of dam safety and asset management are presented. As well as those contributing to the success of the project in seizing an opportunity to mitigate the identified dam safety and operational risks.
Learn more -
$15.00
2010 Papers
2010 – INVESTIGATION OF TWO AGING CONCRETE GRAVITY DAMS IN SOUTH AUSTRALIA
Learn moreM. Tooley, N. Anderson, N. Vitharana, G. McNally, C. Johnson and D. Moore
There is a significant stock of aging concrete dams in Australia which would not meet the requirements of the current recognised dam safety practices applicable to concrete gravity dams.
Learn more
In this paper, field and laboratory investigations undertaken for two concrete gravity dams are presented, these being Middle River Dam and Warren Dam both owned and operated by the South Australian Water Corporation. The field investigations included a comprehensive drilling program recovering core samples ranging in diameter from 61mm (HQ) to 95mm (4C), continuous imaging (RAAX) of the drilled holes and installation of piezometers. Geological logging of the holes and mapping of the unlined spillway were also undertaken. The laboratory program included the testing of concrete lift joints and concrete samples in direct tension, shear and compression.
Concrete in Middle River Dam is suffering from extensive Alkali Aggregate Reaction (AAR), and consequently a suite of laboratory testing is being undertaken to determine the current level of deterioration and residual reactivity so that potential future AAR-induced expansion can be incorporated into any upgrade design solution.
The main purpose of the study is to determine whether site-specific parameters can be used to re-assess the stability of these two dams as calculations, based on the current standards, have shown that the dams have exceeded the allowable factors of safety values at the storage water levels experienced to date.
The findings may be useful to dam designers and owners faced with the upgrading of concrete dams, where traditional assumptions can result in no upgrade or an upgrade costing several million dollars.