2010 – Assessment of flow-induced vibration in radial gates during extreme flood
Karen Riddette, David Ho
Recent dam safety reviews of a number of Australian dams have identified that the arms of raised radial gates may be partially submerged by extreme flows which exceed the original design flood for the dam. Various design solutions have been proposed to secure and strengthen the radial gates, however an important concern is the potential for flow-induced vibration. Under extreme flood conditions, flows near the gate arms will be high-velocity, free-surface, with a steep angle of attack on the arm beams. Traditional hand calculations for computing vibrations are of limited applicability in this situation, and there is little published data available for this combination of flow conditions and arm geometry. A detailed study using CFD modelling of the potential for vibration around radial gate arms was carried out for Wyangala Dam. This paper presents the results of the validation and reveals some interesting flow patterns and vortex shedding behaviour.
Assessment of flow-induced vibration in radial gates during extreme flood
$15.00
Related products
-
$15.00
Papers 2010
2010 – Water for Central Queensland – Connors River Dam and Pipeline Project
Learn moreDavid Ryan, Sean Fleming
The Connors River Dam and Pipeline Project comprises the construction of a 367,540 ML storage on the Connors River located in central Queensland and a 130 km pipeline capable of delivering annually 49,500 ML of high priority water to the rapidly expanding Central Queensland Coalfields. The dam also has the capacity to supply water for the downstream agricultural sector.
Key outcomes of SunWater’s recent business case investigations included the identification of a strategy that would deliver the project in parallel with the construction programs currently being developed by the coal mining sector, the delivery of a quality product with high certainty cost and the ability to supply water at a commercially attractive rate. Construction activity is currently scheduled to commence in mid 2011, with commissioning of the works early 2014.
The paper outlines the project details, the design features of the dam and pipeline and the contract strategy adopted in an attempt to deliver the project on time and within budget.
Keywords: Roller Compacted Concrete, Early Contractor Involvement, Design and Construction.
Learn more -
$15.00
Papers 2010
2010 – Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn moreTony Harman, Richard Herweynen, Malay Ghosh
Following a number of years of investigation into the condition of the existing 1960’s post tensioned anchors at Catagunya Dam Hydro Tasmania embarked on an options study to determine the best method to restore the dam stability to acceptable limits for the long term. The required solution was intended to not only resolve the issue of anchor deterioration but also to increase the flood capacity of the dam.
Based on preliminary design work a concrete buttress solution was recommended and approved for detailed design. The preliminary design utilised a simplified, 2-dimensional, rigid body model, including crack analysis. As part of the detailed design a finite element model was developed to refine the preliminary design. However, this model did not support the simplified analysis and further non-linear finite element analysis demonstrated that the proposed passive buttress design solution was not technically feasible. The options were reconsidered and the adopted solution was to replace the original anchors with new modern anchors with a high level of corrosion protection.
The new anchors adopted are the largest post tensioned anchor loading currently used for a dam in the world. This along with the existing post-tensioned anchors and the tight geometry of the dam, which has a central spillway with a cantilevered ogee crest, provided significant challenges with the design of this dam upgrade. Some of the key design challenges included:
– Appropriate level of modeling and analysis to be able to make sound design decisions. (Hydraulic modeling and FEA).
– Congestion due to the tight geometry of the original design.
– Anchor head block detail to ensure the loads would be adequately secured and dispersed into the dam body
– Crest cantilever support to ensure that structural integrity was retained during construction and later in service. Innovative installation of carbon fibre reinforcement was used.
– Strain compatibility. It was important to ensure the structural contribution of new and old working together and that the consequences of application of new large stresses was manageable.
– Existing anchor degradation. The design needed to ensure that stability compliance was achieved for complete to zero effectiveness over time.
– Maintaining operability of dam and power station during construction.
– Achieving an effective long term maintainable solution.This paper will present the risk associated with committing to a solution too early and the design challenges and the solutions finally developed, providing the dam industry with a valuable reference for future similar projects.
Analysis and Design Challenges Associated with the Catagunya Dam Restoration Project
Learn more -
$15.00
Papers 2010
2010 – Maintenance and Human Error – The Australian Dam Experience
Learn moreGlen Hobbs, Robert Rigg, Alan Hobbs, Adam Butler
Maintenance errors and associated non-conformances are becoming increasingly recognised as a source of system failures in a wide range of industries. Research in other industries has shown that errors often arise in response to local factors beyond the control of the maintainer. Various dam ‘incidents’ have been attributed to maintenance errors. In Australia we have been fortunate with few serious dam safety events. However, the dam operating and maintenance environment is changing dramatically.
Learn more
A survey of dam maintenance personnel was recently undertaken in Australia. The survey was in the form of 49 questions that asked participants to state how frequently a situation occurred. This survey format has previously been used in other industries; thus allowing a comparison of dam maintenance with other high-risk industries such as rail infrastructure, oil and gas, and airline maintenance.
A number of ‘error-producing’ conditions have been identified and survey results indicate a high level of poor procedures/documentation and supervision; highlighting the need for accurate and appropriate manuals and supervision of tasks. These and other factors are leading to instances of maintenance non-compliance, which may threaten the reliability and safety of equipment. The survey has revealed that trade training needs to be addressed. However, occupational safety issues are low; indicating a positive approach to a safe working environment. The paper also discusses the responses to specific maintenance questions relevant to the dam industry. -
$15.00
Papers 2010
2010 – A risk-based re-evaluation of reservoir operating restrictions to reduce the risk of failure from earthquake and piping
Learn moreDavid S. Bowles, Loren R. Anderson, Michael E. Ruthford, David C. Serafini, Sanjay S. Chauhan, Utah State University, Logan, Utah, U.S. Army Corps of Engineers, Sacramento, CA
In 2005 the Sacramento District of the US Army Corps of Engineers implemented an operating restriction to reduce the risk of an earthquake-induced failure of Success Dam, which could cause significant life loss and property damage. This paper describes an update of the 2004 risk-based evaluation of operating restrictions for Lake Success, which incorporated new information obtained by the District and enabled a re-evaluation of the level of the operating restriction and provided a basis for a possible modification of the restriction.
Learn more -
$15.00
Papers 2010
2010 – Hidden Valley – Design and Construction of Highland Papua New Guinea First Tailings Dams
Learn moreRick Friedel, Len Murray, Gerrad Suter, James Penman, James Watt, Hendra Jitno
The Hidden Valley tailings storage facility (TSF) has set a new precedent in environmental management of tailings in Papua New Guinea (PNG). Modern mining in PNG arguably began with the development of Bougainville Copper in the late 1960s, and continued through to Ok Tedi, Porgera, Lihir, Misima (and others). These mines have proceeded with deep sea or riverine tailings deposition, rather than construction of a tailings dam to retain the mine waste within an impoundment; as is the practice throughout the majority of the mining industry.
Learn more
The Hidden Valley TSF is comprised of two large earth and rock fill dams, raised by the downstream method. Starter dam construction was completed in 2009. At final height the Main Dam will be one of the highest tailings dams in the world. The dams are constructed of pit waste and therefore have the dual function of storing tailings and waste rock.
Construction of the starter dams and subsequent raises is complicated by conditions at the site. Water management was, and remains, the dominant issue. High rainfall, weak erosive soils, material availability, dense vegetation and remoteness of the site provide constant challenges to construction. The Observational Approach to construction was recommended by the designers and adopted by the mine operator. This involves a knowledgeable pre-assessment of what is likely to change and having contingency plans to deal with possible major issues. This approach allows changes to the design during construction so the “as-built” product is suited for the site, fit for purpose, and remains consistent with the overall intent of the design.
The TSF has been in operation since August 2009 and monitoring data of the structures has been collected during construction and operation. This data is reviewed to confirm design assumptions and assess dam performance.
Personnel involved with this project combined their experiences working in the PNG environment and dam building from other locations. This process led to close interaction between the mine operators, designers and construction teams. Team work and diligent construction practices were and will continue to be necessary to construct and operate the pioneering TSF in PNG.