2010 – A Bi-Directional Fishlift – An Innovative Solution for Fish Passage
Graeme Maher, Richard Herweynen, Martin Mallen-Cooper and Stuart Marshall
Increasing awareness of the environmental impact of dams means that fish passage is emerging as a critical issue for both existing and new dams in Australia.
The fish passage and outlet works for Wyaralong Dam, a new dam currently under construction, required accommodation of large ranges of head and tailwater levels. The solution that has been adopted, a bi‐directional fishlift using a single hopper with trapping for downstream fish movement occurring within the intake tower, is a world first. The solution required the innovative integration of a number of existing technologies to create a system which is necessarily complex, yet reliable and effective.
The paper incorporates discussion of the critical design constraints, the biology of fish passage, the process adopted to reach the concept solution and a description of the final design including its integration with the outlet works. A number of design issues and their solution are discussed in detail, particularly those associated with dealing with the complexity of the design constraints and how the components of the solution were integrated into a seamless design.
The paper will be of use to those involved in the process of providing fish passage on both existing and new structures that obstruct river flow.
A Bi-Directional Fishlift – An Innovative Solution for Fish Passage
$15.00
Now showing 1-12 of 41 2974:
Related products
-
$15.00
2010 Papers
2010 – Evaluating Heat Gain of Mass Concrete in the Hinze Dam Spillway Raise
Learn moreTed Montoya, David Hughes, Orville Werner
The existing Hinze Dam was raised beginning in 2007 to increase water storage capacity, improve its ability to regulate floods, and raise the level of structural safety as compared to the current dam. As part of the 15 m raise of Hinze Dam, the existing 33 m high spillway structure was raised using mass concrete. This new composite structure was constructed as a downstream raise, placing mass concrete on the downstream and top of the existing spillway. The designers of the composite spillway structure developed a finite-element model to consider the early expansion and subsequent slow contraction of the new concrete against the existing concrete. The temperature rise of the new section of mass concrete had to be monitored and controlled to reduce the tensile strains along its interface with the existing spillway, and differential temperatures had to be limited to avoid cracking of the new mass section. Low-heat cement for a conventional mass concrete mix was not readily available so a mix was developed using local materials.
Learn more
Typical mass concrete dams are monolithic structures constructed with lowheat cement. The Hinze Dam spillway design was predicated on the use of materials readily available. The paper presents the assumptions, methods, and criteria that were used in developing the mass concrete mix. It also presents the means and methods for tracking temperature gain during construction of the raised spillway, and how temperature was influenced by placement temperature, construction sequencing, and seasonal conditions. Lastly, the paper will compare the actual performance of the mix with the design analysis, laboratory testing, and finite element studies that were performed during the design. -
$15.00
2010 Papers
2010 – Lessons Learned at the Taum Sauk Rebuild
Learn morePaul C. Rizzo, Ph.D., P.E.; Carl Rizzo; John Bowen
The Authors served in key roles for the design and rebuild of the Dam for the Taum Sauk Rebuild Project between 2007 and 2009. Taum Sauk is the largest RCC Dam in the United States and has a symmetrical cross-section with conventional concrete faces upstream and downstream. The curvilinear shape and the cross-section presented a number of placement issues. In addition, a large number of “Lessons” were learned because of the rapid construction schedule, highly variable temperatures, highly confined working space, numerous details related to waterstops, construction joints and crest-to-gallery drains, foundation preparation, lift maturity, bedding mixes, crack repairs and the conventional concrete upstream face. The authors discuss these issues from the perspective of the Designer, Contractor and Construction Manager.
Learn more -
$15.00
2010 Papers
2010 – Challenges Associated with Identifying and Analysing Potential Failure Mechanisms in Dam Foundations – Taum Sauk Upper Reservoir Dam & Wyaralong Dam Case Studies
Learn moreJared Deible, Richard Herweynen, Gary Dow
The foundation is an important element in the stability of any dam. Understanding the foundation and the potential failure mechanisms associated with the dam foundation is critical to developing the final dam design. This paper will discuss the challenges encountered with the foundation at the Taum Sauk Upper Reservoir Dam and the Wyaralong Dam.
Learn more
The Upper Reservoir of the Taum Sauk project is a 2.3 million cubic metre roller compacted concrete (RCC) dam located near Ironton, Missouri, USA. The RCC dam was constructed in accordance with United States Federal Energy Regulatory Commission (FERC) guidelines to replace a rockfill dike that failed abruptly on December 14, 2005. Wyaralong Dam is a new RCC dam, for water supply, located on the Teviot Brook near the township of Beaudesert in south-east Queensland.
Wyaralong and Taum Sauk each had challenges associated with identifying potential failure mechanisms in the foundation and with analysing the stability of the dam for these potential failure mechanisms. The geology at the projects was very different, but challenges for each project were quantifying the amount of reliance that was placed on the rock mass at the toe of the dam, developing the shear strength parameters, and developing the associated failure mechanisms that would be analysed.
The design of Wyaralong and the rebuilt Taum Sauk Upper Reservoir, including the geometry of the dam sections, were developed based on the foundation features at each project. Foundation treatments and excavation designs were developed based on the stability analyses conducted during the design phase. These foundation treatments included removal of weak layers or defects where necessary, but features were left in place in the foundation at selected locations at each project. Where features were left in place, stability analyses concluded the dam was stable. The stability analyses at each project considered three dimensional effects along features in the foundation where appropriate.
As the foundation was uncovered during the construction phase of each project, the parameters used in the stability analysis conducted during the design phase were confirmed or adjusted. The excavation and foundation preparation activities were adjusted as necessary based on actual conditions during the construction phase. -
$15.00
2010 Papers
2010 – Construction for Destruction: Downriver Diversion Dam Modifications Required for Matilija Dam Decommissioning
Learn moreAric Torreyson, Krey Price, Bob Hall
In a 2004 feasibility study, the U.S. Army Corps of Engineers (Corps) and Ventura County Watershed Protection District (VCWPD) recommended decommissioning Matilija Dam, a concrete arch dam originally constructed to a 60-metre height in 1948. A decade after its completion, the United States Bureau of Reclamation (USBR) constructed the Ventura River Project, comprising additional facilities designed to meet the growing water demand of Ventura County. Robles Diversion Dam, a 7-metre high by 160-metre long diversion structure located downstream of Matilija Dam, was built under the Ventura River Project to feed Lake Casitas, a water supply reservoir that serves as an integral part of the overall project.
Learn more
Due to extreme sedimentation, Matilija Dam no longer serves its intended water supply and flood control purposes. In addition to the loss of storage capacity, other issues surround the dam, including adverse environmental impacts from its continued operation, seismic considerations, and structural concerns. These concerns led to the decision to decommission the dam as an essential step in rehabilitating key ecosystems in the Ventura River Catchment and reducing future risks to public safety. According to current estimates, 5 million cubic metres of sediment has accumulated behind the dam and will need to be removed in conjunction with the dam decommissioning; minimising the associated downstream impacts has been the subject of additional government studies.
The USBR determined through detailed hydrologic, hydraulic, and sediment transport analyses, including numerical and physical modelling, that the existing Robles Diversion Dam was not capable of passing the increased sediment load expected to result from the removal of Matilija Dam. To increase the sediment transport capacity across its spillway, the existing diversion dam requires modification. Under contract with the Corps, Tetra Tech and its subcontractors are completing the design plans for the Robles Diversion Dam modifications.
This paper presents unique aspects of the Robles Diversion Dam modifications, including sediment management procedures guided by numerical and physical model results and issues associated with the design of a rock ramp spillway and high-flow fishway, expansion of the existing spillway gate structure, and raising of the dam embankment. The rehabilitation efforts reduce impacts to the migration of endangered fish species and allow for the eventual removal of Matilija Dam, which is the ultimate goal in the effort to balance engineered structures with a natural river setting. When completed, the project will provide fish passage to the upper catchment for the first time in over sixty years. -
$15.00
2010 Papers
2010 – Hinze Dam: numerical modelling prediction versus performance
Learn moreGavan Hunter and James Toose
Hinze Dam, located on the Gold Coast in Queensland, is an Extreme hazard storage under the authority of Seqwater (Southeast Queensland). The Stage 3 works, which are coming to completion, require raising the existing 65 m high central core earth and rockfill embankment almost 15 m to a maximum height of 80 m. The reservoir has been near full supply level for the construction period.
Learn more
Numerical modelling and empirical predictive methods were used to estimate the deformation at three key embankment sections during construction; the right abutment of the main embankment, the maximum section and the main to saddle embankment connection. The results of the analysis were incorporated into the dam safety management plan to provide a framework for evaluation of the monitored deformation during construction.
This paper summarises the numerical modelling and outlines the framework of the dam safety management plan. It then compares the actual deformation measured during construction against the predictions. Overall, the modelled deformation has compared very well in terms of trend and reasonably well in terms of magnitude with the actual deformation to date. On one occasion the deformation has exceeded the estimates and triggered a response to elevate the review to higher levels within the Alliance. Concluding comments are provided on the useful aspects and limitations of the numerical modelling at Hinze Dam.