2010 – A Bi-Directional Fishlift – An Innovative Solution for Fish Passage
Graeme Maher, Richard Herweynen, Martin Mallen-Cooper and Stuart Marshall
Increasing awareness of the environmental impact of dams means that fish passage is emerging as a critical issue for both existing and new dams in Australia.
The fish passage and outlet works for Wyaralong Dam, a new dam currently under construction, required accommodation of large ranges of head and tailwater levels. The solution that has been adopted, a bi‐directional fishlift using a single hopper with trapping for downstream fish movement occurring within the intake tower, is a world first. The solution required the innovative integration of a number of existing technologies to create a system which is necessarily complex, yet reliable and effective.
The paper incorporates discussion of the critical design constraints, the biology of fish passage, the process adopted to reach the concept solution and a description of the final design including its integration with the outlet works. A number of design issues and their solution are discussed in detail, particularly those associated with dealing with the complexity of the design constraints and how the components of the solution were integrated into a seamless design.
The paper will be of use to those involved in the process of providing fish passage on both existing and new structures that obstruct river flow.
A Bi-Directional Fishlift – An Innovative Solution for Fish Passage
$15.00
Now showing 1-12 of 41 2974:
Related products
-
$15.00
2010 Papers
2010 – Pukaki Canal Intake structure repairs – November 2009 – 62 hours on the slab
Learn moreJim Walker, Jamie Macgregor
The Pukaki Canal Inlet structure is a large gated culvert and stilling basin structure, it is a High PIC appurtenant structure to the Pukaki Dam, located in the Mackenzie Basin area of New Zealand’s South Island.
The 560m3/s capacity inlet structure is founded on glacial moraines. It controls flow from the178 km2 Lake Pukaki storage into the 80m wide, 22km long Pukaki/Ohau canal. It is the owner’s (Meridian Energy) most important valve, as it feeds 1550MW of hydro generation on the Waitaki River.
A risk assessment in late 2009 identified a previously unrecognised trigger for a potential failure mode for the stilling basin. Principally, ongoing erosion of the reinforced concrete base slab could lead to failure of water stops in the slab joints potentially leading to slab uplift, foundation erosion, and ultimately, catastrophic failure of the Pukaki Dam. To better define the risk to the structure, further inspection of the stilling basin was recommended.
A dewatered inspection of the stilling basin was required, as further dive inspections would not improve our understanding of structure condition. Because the stilling basin cannot be isolated from the canal, this requires dewatering the entire Pukaki/Ohau canal, presenting significant risks of damage to the canals from slumping and lining failure. A dewatered outage also has major business revenue impacts.
This paper describes how Meridian were able to take advantage of a transmission network outage, scheduled for just six days after the risk was identified, to plan, safely dewater, inspect, and rewater 22km of hydro canal, and not just to inspect the Pukaki Canal Inlet structure, but also to implement repairs to the stilling basin slab which have successfully mitigated the structure safety and operational risks. This huge undertaking involved mobilising an army of people, plant and materials, and cost over NZ$1.8m. From identifying the risk to the structure, to completing repairs took just 13 (very busy) days.
Lessons learned in the areas of dam safety and asset management are presented. As well as those contributing to the success of the project in seizing an opportunity to mitigate the identified dam safety and operational risks.
Learn more -
$15.00
2010 Papers
2010 – Deformation and dam safety of earthfill dams
Learn moreGavan Hunter and Robin Fell
Earthfill embankments in Australia have been widely used in dam construction since the start of the 20th century replacing the older puddle type and concrete corewall embankment designs. Most Australian dam portfolios will have one or more of these embankment types. A key component to the dam safety assessment of these dams is understanding their deformation behaviour, in particular the assessment of the future performance of these structures as they now reach ages of 40 to 80 years or more.
Learn more
This paper presents the findings of a study on the deformation behaviour of earthfill embankments. It draws on a database of 54 case studies from mainly Australia, the United States and Europe. It is a component of a broader study on the deformation behaviour of embankment dams undertaken as a research project at University of New South Wales earlier this decade.
The data presented in this paper allows dam owners and their consultants to compare the deformation behaviour of their dam to the performance of other similar earthfill dams in evaluating dam safety. Typical patterns of deformation behaviour are presented and guidance is provided on identifying trends in deformation behaviour that are assessed as “abnormal” and that may be potentially indicative of marginal stability. -
$15.00
2010 Papers
2010 – Unique Approach of an Integrated Design for a Challenging 180 Metre High Stepped Spillway
Learn moreThomas Vasconi, Mike Gowan
This paper describes the methodology adopted for the design of a 180 m-high stepped chute spillway to be constructed on a mine tailings storage facility (TSF) in Africa. This TSF dam, constructed using the “downstream method”, will be raised progressively via a series of nine lifts as mining proceeds. The first eight will be equipped with an operational spillway sized for the 1in 10,000 AEP whilst the ninth will house the closure spillway sized for the Probable Maximum Flood. The problem, common to all staged tailings dams, is how to design the spillways for such raising sequence? The very steep ridge declivity favored locating them in a unique configuration rather than the more usual separate hillside spillway on each dam abutment. The design of such spillways was challenging since it had to integrate the TSF interdependency parameters (water balance, dam raise sequence) whilst including flood routing, spillway sizing, stepped spillway design components. Challenging aspects of the design also included optimizing the costs associated with the short service life of these spillways. Furthermore, the design was undertaken in a way that the operating stepped chute could be upgraded and reused at mine closure. The design incorporates an innovative solution which allows reduction in the rock armouring quantity of up to 40% with associated cost benefits, and sustainability in terms of material usage. The lessons learnt in applying this innovative and sustainable design are useful for other sites requiring adaptive construction and short service life spillways.
Keywords: Tailings storage facility, stepped chute spillway, hydrology, hydraulics, mine water management.
Learn more -
$15.00
2010 Papers
2010 – What Your Asset is Telling You – Testing and Analysis of Data
Learn moreDr Adam Butler, Robert Rigg, Glen Hobbs
The cost of maintenance is a serious problem. Preventive Maintenance is a good strategy if implemented well, but can led to unnecessary costs if items are replaced unnecessarily. Predictive maintenance can augment preventative maintenance by using real time instrumentation to monitor conditions. These techniques have been effective at recognizing the symptoms of impending machine failure
Glen Hobbs and Associates (GH&A) recently analysed pressure and displacement data from hydraulically actuated hoisting equipment of a large emergency closure fixed wheel gate. Data analysis enabled GH&A to pin-point causes of the gate malfunction. Anomalies in the data waveform corresponded to impacts and squeeze points in the system. Furthermore, comparing recent test data with older data highlighted gate deterioration over time.
Testing, analysis and trending of data enables asset managers to better predict the point at which maintenance really needs to be performed and shows that careful analysis of relevant data can help solve multi-faceted problems.
Keywords: Operations, Maintenance, Asset Management, Gates.
Learn more -
$15.00
2010 Papers
2010 – INVESTIGATION OF TWO AGING CONCRETE GRAVITY DAMS IN SOUTH AUSTRALIA
Learn moreM. Tooley, N. Anderson, N. Vitharana, G. McNally, C. Johnson and D. Moore
There is a significant stock of aging concrete dams in Australia which would not meet the requirements of the current recognised dam safety practices applicable to concrete gravity dams.
Learn more
In this paper, field and laboratory investigations undertaken for two concrete gravity dams are presented, these being Middle River Dam and Warren Dam both owned and operated by the South Australian Water Corporation. The field investigations included a comprehensive drilling program recovering core samples ranging in diameter from 61mm (HQ) to 95mm (4C), continuous imaging (RAAX) of the drilled holes and installation of piezometers. Geological logging of the holes and mapping of the unlined spillway were also undertaken. The laboratory program included the testing of concrete lift joints and concrete samples in direct tension, shear and compression.
Concrete in Middle River Dam is suffering from extensive Alkali Aggregate Reaction (AAR), and consequently a suite of laboratory testing is being undertaken to determine the current level of deterioration and residual reactivity so that potential future AAR-induced expansion can be incorporated into any upgrade design solution.
The main purpose of the study is to determine whether site-specific parameters can be used to re-assess the stability of these two dams as calculations, based on the current standards, have shown that the dams have exceeded the allowable factors of safety values at the storage water levels experienced to date.
The findings may be useful to dam designers and owners faced with the upgrading of concrete dams, where traditional assumptions can result in no upgrade or an upgrade costing several million dollars.