2006 – Some Dam Monitoring Observations and Experiences from New Zealand
M Gillon, T Logan, N Logan
The paper has been prepared to support the key questions selected for the ANCOLD Dam Instrumentation and Survey Seminar to be held in Sydney in November 2006 and to provide a New Zealand perspective. The paper is not a ‘state of dam monitoring practice in New Zealand’ dissertation but is rather a targeted summary of the authors’ experiences and observations from practicing in this area.
These experiences and observations on dam monitoring are grouped under the following headings, reflecting the key questions:
- Dam monitoring in New Zealand
- Monitoring in the dam life cycle
- How much monitoring is enough
- Instrumentation and survey issues
- Using and managing monitoring data
- Some early warning examples
- Monitoring as part of remediation
$15.00
Now showing 1-12 of 59 2970:
Related products
-
$15.00
2006 Papers
2006 – Which Belts And Braces Do We Really Need? – Application of a Functional Safety Methodology to a Dam Safety Assurance Programme
Learn moreC Lake and J Walker
Meridian Energy is the owner and operator of a chain of hydro dams on the Waitaki River in the
South Island of NZ. It operates a Dam Safety Assurance Programme which reflects current best
practice; consequently it has focused primarily on managing civil dam assets. Advances in plant control technology have allowed de-manning of our power stations, dams and canals through centralised control. The safety of our hydraulic structures is increasingly reliant on the performance of Dam Safety Critical Plant (DSCP) – those items of plant (eg water level monitoring, gates, their power and control systems, and sump pumps) which are required to operate automatically, or under operator control, to assure safety of the hydraulic structures in all reasonably foreseeable circumstances.Recent dam safety reviews have highlighted that the specification and testing of our DSCP is based on the application of ‘rules of thumb’ which have been established through engineering practice (eg. “monthly tests”, “third level of protection”, “backup power sources”, “triple voted floats”). The
adequacy of these engineering practices is difficult to defend as they are not based on published
criteria. The realisation that such rules may not be relevant to the increased demand on, and complexity of, DSCP led us to ask “Which belts and braces do we really need?” The current NZSOLD (2000) and ANCOLD (2003) Dam Safety guidelines give little guidance regarding specific criteria for the design and operation of DSCP.Meridian has identified the use of Functional Safety standards (from the Process industry, defined in IEC 61511) as a tool which can be applied to the dams industry to review the risks to the hydraulic structures, the demands on the DSCP, and utilise corporate “tolerable risk” definitions to establish the reliability requirements (Safety Integrity Levels) of each protection, and determine lifecycle criteria for the design, operation, testing, maintenance, and review of those protections.
This paper outlines the background to identifying Functional Safety as a suitable tool for this purpose, and the practical application of Functional Safety Analysis to Meridian’s DSCP.
Learn more -
$15.00
2006 Papers
2006 – Specialist Dam Safety Instrumentation for Identifying and Monitoring Earthquake Damage at Aviemore Dam, New Zealand
Learn moreP Amos, N Logan, and J Walker
There are a number of geological faults in close proximity to Aviemore Power Station in the South Island of New Zealand, including a fault in the foundation of the 48m high earth dam component of the power station. Possible movement of the Waitangi Fault in the earth dam foundation is of particular concern for dam safety, and the effects on the dam of a fault rupture has been the subject of detailed investigation by the dam’s owner Meridian Energy Ltd. These investigations have concluded that the dam will withstand the anticipated fault displacement related to the Safety Evaluation Earthquake without catastrophic release of the reservoir.
The identification of damage to the dam following an earthquake and monitoring of the dam to identify the development of potential failure mechanisms are important for determining the post-earthquake safety of the power station. The first stage of the post-earthquake response plan is the quick identification of any foundation fault rupture and damage to the dam to enable immediate post-earthquake mitigation measures to be initiated, such as reservoir drawdown. Following initial response, the next stage of the post-earthquake monitoring programme for the embankment dam is longer term monitoring to identify a changing seepage condition due to damage to the dam that might lead to a piping incident. Such an incident may not occur immediately after an earthquake, and it can be some time before the piping process becomes evident.
This paper presents some key instrumentation installed at Aviemore Dam and included in the emergency response plan for the post-earthquake monitoring of the embankment dam.
Learn more -
$15.00
2006 Papers
2006-Resource Crisis Or Imagination Challenge?
Learn moreRoger Vreugdenhil, Joanna Campbell
The dams industry is immersed in a changing environment. It is one of many industry sectors in Australia becoming acutely aware of the impacts of ageing practitioners and a competitive labour market. Shortages of skills and labour are impacting on all participants. The constraints around recruitment and retention are further amplified for dam owners in some States by increasing expenditure regulation and accountability.
People choosing to leave or retire from the dams profession per se does not necessarily pose a problem. Instead, problems arise if insufficient transfer of valuable knowledge has occurred prior to their departure, if the rate of replenishment is inadequate to cope with current and future industry workload, and if there is no innovation around what workforce is involved. Future work will likely be characterised by remedial works for existing dams rather than new dam construction, with an increased focus on environmental restoration, and optimisation of operations and maintenance to minimise losses and maximise productivity. These tasks require a great level of skills in leadership and innovation, equal to any level previously applied to this industry.
Organisational goals and decisions have to be realised through people and it appears that many people are taking up their roles differently than in the past. The authors, both Generation X, contend that the core issue is as much a challenge of imagination as it is a crisis of human resourcing. Greater imagination is required around: the image presented by the profession; retention and replenishment of personnel; appropriately connecting people of different generations to their individual roles; developing leaders comfortable with the sentient aspects of organisation life and capable of collaboration; and sustainable management of knowledge.
Learn more -
$15.00
2006 Papers
2006 – Hydraulic Flow Simulation – Five Years On: Lessons Learned and Future Challenges
Learn moreKaren Riddette, David Ho & Julie Edwards
Over the last five years in Australia, the use of computational fluid dynamics for the investigation of water flows through hydraulic structures has been steadily rising. This modelling technique has been successfully applied to a range of dam upgrade projects, helping to assess spillway discharge capacity and structural integrity, and giving insight into flow behaviours including orifice flow, shock wave formation and chute overtopping (Ho et al, 2006). Innovative and cost effective upgrade solutions have been implemented from numerical model studies including baffle plates (Maher and Rodd, 2005) and locking arrangements to protect radial gates from extreme floods.
This paper will begin with a review of recent dam engineering applications, including outlet flow through a fish screen, the performance of a fishway against hydraulic and environmental criteria and pipe flow in a large pumping station. Some of the difficulties and limitations of the modelling technique will be examined together with current research being conducted to address these issues and further validate the numerical results against published data. Some interesting results to date will be reported on elliptical crest discharge, boundary geometry, and model/prototype correlation.
With increasing computing power and software enhancements, the potential applications for numerical simulation in dam engineering continue to grow. This paper will also examine the future outlook and highlight some recent advances such as the thermal simulation of cold water pollution, air entraining flows and combined free-surface and pipe flow in a morning glory spillway.
Learn more -
$15.00
2006 Papers
2006 – CORPORATE GOVERNANCE FOR DAM SAFETY
Learn moreS. Frazer
Ensuring compliance with the Regulator’s requirements is a cornerstone consideration for any water corporation in planning its risk minimisation strategies against dam failure. With the increased focus on due diligence and corporate governance however, there are emerging themes that are of equal importance for a water corporation in planning protections against its core risks to dam safety.
These considerations include:
Learn more
• documenting and implementing plans and strategies to ensure corporate compliance with the
Regulator’s requirements and updating these in line with legislative and policy changes;
• Documenting and implementing the corporation’s defences to the common law duty of care for
public liability, including keeping up to date with the latest case law development locally and
internationally in interpreting implications in respect of damage to property and injury and loss of
life in relation to dam failure.
• Adopting behaviours and practices that bear out a compliance culture – is the current dam safety
assessment and training “best practice” and is this enough to defend a claim? What is reasonable
in economic and practical terms to ensure defensibility?
• ensuring the Board, Executive and other Officers are informed of operational decisions and
incidents and their advice is implemented;
• arranging and maintaining appropriate insurances if available for public liability and property
damage, as well as protections for directors and officers, both past and current.
• Developing and implementing a policy for disclosure, document management and retention that will support investigation for legal proceedings purposes; including providing privilege for relevant
legal advices.