2006 – Some Dam Monitoring Observations and Experiences from New Zealand
M Gillon, T Logan, N Logan
The paper has been prepared to support the key questions selected for the ANCOLD Dam Instrumentation and Survey Seminar to be held in Sydney in November 2006 and to provide a New Zealand perspective. The paper is not a ‘state of dam monitoring practice in New Zealand’ dissertation but is rather a targeted summary of the authors’ experiences and observations from practicing in this area.
These experiences and observations on dam monitoring are grouped under the following headings, reflecting the key questions:
- Dam monitoring in New Zealand
- Monitoring in the dam life cycle
- How much monitoring is enough
- Instrumentation and survey issues
- Using and managing monitoring data
- Some early warning examples
- Monitoring as part of remediation
$15.00
Now showing 1-12 of 59 2970:
Related products
-
$15.00
2006 Papers
2006 – Ross River Dam Spillway Gate Reliability and the Impact on the Design
Learn moreMalcolm Barker, Barry Vivian and David S. Bowles
Ross River Dam is located approximately 15 km upstream of Townsville and provides a dual role of water supply and flood mitigation. The dam comprises a 39.6m long concrete overflow spillway flanked by a central core rockfill embankment of 300 m in length with a 7,620 m long left bank earth fill embankment, which has inadequate internal filter zones for piping protection. Since completion, design rainfall predictions for the area have doubled, technical data has changed and so, too, have dam safety standards. Dam safety evaluations during 2000-2002 showed that the dam required upgrading in order to bring it up to international standards. As an interim measure, the spillway was cut down by 3.6m.
Upgrade design works were then completed using risk-based design criteria to validate the design, and construction is in progress. The upgrade works comprise spillway anchoring, installation of three radial gates on the spillway, stilling basin modifications, embankment filter protection, and dam crest raising.
This paper presents the options considered, the method of reliability analysis, and how the results influenced the spillway system design and overall risk evaluation for the upgrade design.
Learn more -
$15.00
2006 Papers
2006 – The Requirement for Dam Instrumentation from a Queensland Regulatory Perspective
Learn morePeter Allen
The Requirement for Dam Instrumentation from a Queensland Regulatory Perspective ANCOLD 2006 Conference – Instrumentation and Survey Seminar Page 1 THE REQUIREMENT FOR DAM INSTRUMENTATION FROM A QUEENSLAND REGULATORY PERSPECTIVE Peter Allen, Director Dam Safety (Water Supply) Department of Natural Resources and Water ABSTRACT This paper presents the Queensland dam safety regulator’s views on issues to be considered when designing and implementing instrumentation for referable dams in Queensland. It also summarises the general requirements for dam instrumentation contained in the Queensland Dam Safety Management Guidelines and gives some thoughts on what should be contained in any ANCOLD Instrumentation Guideline.
Learn more -
$15.00
2006 Papers
2006 – Place And Role Of Risk In Dam Safety Management
Learn moreD.N.D. Hartford and P. A. Zielinski
With the notable exceptions of dyke safety in the Netherlands and dam safety in Australia, explicit consideration of the equity versus efficiency dilemma associated with dam safety decision-making has been virtually ignored in the past debates related to safety of dams thus leading to inconsistent judgments in the development of dam safety policies. The equity-efficiency dilemma is now being debated in Canada as part of the process of revising the Canadian Dam Safety Guidelines. This paper explains how the argument in favour of formulating the new Canadian Dam Safety Guidelines within the formal risk assessment and risk management framework is being presented. The paper then focuses on the difficulties involved in aligning the well tried and tested and generally successful traditional approach to dam safety with the relatively untried and untested risk assessment approach. While the paper does not provide a significantly different perspective (a made in Canada approach) to the role of risk assessment in dam safety management as established in Australia and as presented in ICOLD Bulletin 130 (ICOLD, 2005), it does challenge some aspects of the ways dams are classified in the emerging risk assessment frameworks for dam safety management.
Learn more -
$15.00
2006 Papers
2006 – Instrumentation And Monitoring Of Kelag’s Dams
Learn moreF. Neuschitzer
The paper describes the methodology, operative techniques and organizational aspects that are used for dam safety assessment procedures. Kelag owns 15 larger dams with wall heights up to 110 m. It is necessary to monitor the aging of the structures and to check all safety equipment regularly. The manned control centre is situated at the KELAG Headquarter in Klagenfurt, which is the capital of Austria’s southern-most Province, Carinthia. KELAG is the principal electricity supplier in Carinthia, and owns several reservoirs in the Austrian Alps. The whole hydropower system has a capacity of 434 MW with an annual production of 1000 GWh. During the last century KELAG employees designed, supervised and constructed most of the structures in cooperation with the authorities. Most of the rock-fill dams have a bituminous concrete sealing on the upstream face. KELAG owns one concrete arch dam with a height of 30 m. A pendulum monitors the movement of the dam crest. This information is transmitted to both the power house and the manned control centre in Klagenfurt. Seepage is monitored at all rock-fill dams. In case of an alarm a skilled engineer has to be informed by the staff of the manned control centre. This dam safety engineer starts to check the reasons on site and manages the emergency action plan. Data has been collected since 1998 and special software is used to handle this information, carry out interpretation and safety assessments. One aim of data collection is to develop a decision support system performing online evaluation, explanation and interpretation of dam behaviour. Normally, once a year geodetic measurements are carried out at all dams.
KELAG’s experience gained in the use of automatic monitoring and risk assessment of dams is covered in this paper. The monitoring systems show the state of the structures and those showing anomalous situations requiring human intervention can be identified as soon as possible. Although the repercussions of the free market system have led to substantial staff reductions, the quality of dam surveillance has had to remain unaffected. Dam safety is guaranteed by new types of instrumentation, data transmission and data assessment. A special software has to be updated constantly.
Learn more -
$15.00
2006 Papers
2006 – PMP ESTIMATES – ARE WE KIDDING OURSELVES?
Learn moreJanice H. Green and Jeanette Meighen
The Probable Maximum Precipitation (PMP) is defined as ‘the theoretical greatest depth of
precipitation that is physically possible over a particular catchment’. The PMP depths provided by
the Bureau of Meteorology are described as ‘operational estimates of the PMP’ as they represent the best estimate of the PMP depth that can be made, based on the relatively small number of large events that have been observed and our limited knowledge of the causative mechanisms of extreme rainfalls.Nevertheless, the magnitudes of the PMP depths provided by the Bureau are often met with scepticism concerning their accuracy when compared to large rainfall events which have been observed within catchments and which are, typically, only 20% to 25% of the PMP estimates. The recent increases in the PMP depths, resulting from the revision of the Generalised Tropical Storm Method (GTSMR), have served only to entrench this cynicism.
However, analyses of the magnitudes of the storms in the databases adopted for deriving PMP depths show that these observed storms constituted up to 76% of the corresponding GTSMR PMP depths and up to 80% of the Generalised Southeast Australia Method PMPs for the storm location. Further, comparisons of the PMP depths to large storms observed in similar climatic regions around the world indicate that the PMPs are not outliers.
The results of these analyses are presented for a range of catchment locations and sizes and storm durations and demonstrate that the PMP estimates provided by the Bureau of Meteorology are reasonable and are not unduly large.
Learn more